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RSICC CODE PACKAGE CCC-700

1. NAME AND TITLE
MCNP4C: Monte Carlo N-Particle Transport Code System.

AUXILIARY PROGRAMS -
PRPR: . Pre-processor for Extracting the Various Hardware Versions of MCNP and other
codes.

MAKXSF: Preparer of MCNP Cross-Section Libraries.

RELATED DATA LIBRARY

MCNPA4C includes a test library of cross sections for running the sample problems. The DLC-
200/MCNPDATA code package includes data for use with MCNP and is distributed with the code
package for the convenience of users.

Expanding the code system (50 MB) and binary cross section libraries (360MB) under
Windows requires ~410 MB of hard disk space. Unix users need more because the ASCII cross
sections require 880 MB of hard disk space.

2. CONTRIBUTOR
Diagnostics Applications Group, Los Alamos National Laboratory, Los Alamos, New Mexico.

3. CODING LANGUAGE AND COMPUTERS
FORTRAN 77 or 90 and C; UNIX workstations, Intel-based PCs, Cray, and VAX.
(CO0700/ALLCP/01).

4. NATURE OF PROBLEM SOLVED
MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent,

coupled neutron-photon-electron Monte Carlo transport code system. MCNPAC is the first major
release of MCNP since version 4B (February 4, 1997). The major new features of MCNP4C
include:

* Unresolved resonance range probability tables;

* Perturbation enhancements;

* Superimposed mesh weight window generator;

* Alpha eigenvalues;

* Macrobodies;

* ENDF/B-VI improvements;

* PC Enhancements;

* Electron Physics Enhancements;

* Parallelization enhancements;

* Delayed Neutrons.

In addition, there are 30 minor features/enhancements and 635 corrections. See the MCNP home
page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP. See the Electronic
Notebook at hitp://www-rsicc.ornl. gov/rsic.html for information on user experiences with MCNP.

5. METHOD OF SOLUTION
MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells
bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise
continuous-energy cross section data are used, although multigroup data may also be used. Fixed-
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source adjoint calculations may be made with the multigroup darta option. For neutrons, all
reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha,
beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are
available, For photons, the code takes account of incoherent and coherent scattering with and
without electron binding effects, the possibility of fluorescent emission following photoelectric
absorption, and absorption in pair production with local emission of annihilation radiation. A very
general source and tally structure is available. The tallies have extensive statistical analysis of
convergence. Rapid convergence is enabled by a wide variety of variance reduction methods.
Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV
- 1 GeV for photons and electrons.

RESTRICTIONS OR LIMITATIONS
None noted.

. TYPICAL RUNNING TIME

The 29 test cases ran in ~3 minutes on a Pentium I1I 550 MHz in a DOS window of
WindowsNT and in ~ 5 minutes on a Pentium I 300MHz in a DOS windos of Windows98,

COMPUTER HARDWARE REQUIREMENTS
MCNP is operable on Cray computers under UNICOS, workstations or PC’s running Unix or
Linux, Windows-based PC’s, and VAX computers under VMS. Executable files for Windows-

based PC’s are provided for running Pentium computers.

COMPUTER SOFTWARE REQUIREMENTS
Compilation of MCNP requires both FORTRAN77 and ANSI C standard compilers. MCNP

can be compiled with g77 on PC’s running Red Hat Linux. PVM is required for multiprocessing
on a cluster of workstations and can be downloaded from www.netlib.org. Scripts are provided for
installation on both PC and Unix systems. The PC distribution includes MCNP, PRPR and-
MAKXSF executables which were built in a DOS window of Windows NT using the Digital Visual
Fortran 6.0A and Lahey/Fujitsu Fortran 95 Release 5.50d compilers. The MCNP executables
were built with MDAS=4,000,000 and MDAS=28,000,000. RSICC tested this release on the
following systems:

1. AIX 4.3.3 (IBM 43P-260) with XL C/C++ 4.4; XL Fortran 6.1
2. Redhat Linox Version 6.1 on 450 MHz Pentium III (9 nodes) with g77
3. Sun Solaris 2.6 on UltraSparc 60 using F77 Version 5.0 and C/C+ + Version 5.0

4, HP B1000 (PA-8500) under HP-UX 10.20 with FORTRAN 77 V0.20 and HP C
V10.32.00

5. DEC 500 AU under Digita! Unix 4.0D with DEC Fortran 5.1-8 and DEC C 5.6-075
6. SGI MIPS R10000 (225MHz) under IRIX 6.5.5 with MIPS Fortran 77 Version 7.3

7. Pentium I 300MHz in a DOS window of Windows 98 with Digital Visual Fortran
Professional Edition 6.0A Fortran 90 compiler with QuickWin plots
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3. Pentium II 300MHz in a DOS window of Windows 98 with Lahey/Fujitsu Fortran 95 --
LF95 Version 5.50 Fortran 90 compiler with Winteracter Starter Kit

10. REFERENCES

11.

12.

The Adobe Acrobat Reader freeware is available from htp.//www.adobe.com to read and print
the electronic documentation.
a. included documentation in electronic format on the CD in DOC/C700DOC.PDF:

LANL, "README.txt" (February 29, 2000).

RSICC, "README.1st" (July 18, 2000}.

J. S. Hendricks, "MCNP4C," LANL Memo X-5: JSH-2000-30 (U) (February 29, 2000).

J. F. Briesmeister, Ed., "MCNP - A General Monte Carlo N-Particle Transport Code, Version
4C," LA-13709-M (April 2000).

H. M. Abhold, J. S. Hendricks, "MCNP Software Quality Assurance Plan,” LA-13138 (April
1996).

S. Frankle, "Compiling MCNP Version ‘4B’ on VMS," LANL Memorandum (February 12,
1997).

T. Goorley, Informal Note on "MCNP4B in Parallel on PC’s Running Linux" (July 22, 1997).

b. background information:

D. J. Whalen, D. A. Cardon, J. L. Uhle, J. S. Hendricks, "MCNP: Neutron Benchmark
Problems," LA-12212 (November 1993).

C. D. Harmon, II, R. D. Busch, J. F. Briesmeister, R. A. Forster, "Criticality Calculations
with MCNP: A Primer," LA-12827-M (August 1994).

R. C. Little and R. E. Seamon, "Dosimetry/Activation Cross Sections for MCNP," LANL
Memo (March 13, 1984),

CONTENTS OF CODE PACKAGE

Included are the referenced electronic documents in (10.a) and the source codes, test problems,
PC executables, and installation scripts transmitted on CD ROM in DOS and UNIX format. The
DLC-200/MCNPDATA. data library is included on the distribution media; these cross sections are
in ASCII mode in the Unix file and in binary mode for PC Windows users. A Lahey-compiled
MAKXSF executable was used to create the binary cross sections in the PC distribution. See the
README files for details on package contents and installation.

DATE OF ABSTRACT
April 2000, revised July 2000.

KEYWORDS: COMPLEX GEOMETRY; COUPLED; CROSS SECTIONS; ELECTRON;
GAMMA-RAY; MICROCOMPUTER; MONTE CARLO; NEUTRON;
WORKSTATION



DWOF—-—0=



MCNP4C Notes LODDAT: 01/20/00 RELEASE DATE: 02/29/00

1.0 Copyright

MCNP was prepared by the Regents of the University of California at Los Alamos National Laboratory
(the University) under Contract number W-7405-ENG-36 with the U. S. Department of Energy (DOE).
The University has certain rights in the program pursuant to the contract and the program should not be
copied or distributed outside your organization. All rights in the program are reserved by the DOE and
the University. Neither the U. S. government nor the University makes any warranty, express or implied,
or assumes any liability or responsibility for the use of this software.

2.0 MCNP4C

MCNPA4C is the first major release of MCNP since version 4B (February 4, 1957).

The major new features of MCNP4C include:

* Unresolved resonance range probability tables;
* Perturbation enhancements;

* Superimposed mesh weight window generator;
* Alpha eigenvalues;

* Macrobodies;

* ENDF/B-VI improvements;

* PC Enhancements;

* Electron Physics Enhancements;

* Parallelization enhancements;

* Delayed Neutrons.

In addition, there are 30 minor features/enhancements and 65 corrections.

3.0 User Support

A LIMITED amount of free user support is available from John Hendricks, menp@lani.gov, and Judi
Briesmeister, 505-667-7277. Users are encouraged to communicate with other users via the list server,
menp-forum@lanl.gov. Our WWW Web site is:  hitp://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP




Contact menp@lanl.gov to be added to the MCNP e-mail list or to arrange additional support on a fee

basis.

4.0 DISTRIBUTION FILES

The following ﬁles should be present with the MCNP 4C distribution:

FILE DESCRIPTION
Readme This file.
INSTALL Installation controller.
Named INSTALL.BAT for PC Windows systems.
INSTALL.FIX Instaliation fix file.
MCSETUP.ID Setup FORTRAN code.
PRPR.ID FORTRAN preprocessor code.
MAKXS.ID Cross-section processor source code.
MCNPC.ID MCNP C source code.
MCNPF.ID MCNP FORTRAN source code.
RUNPROB Script file for MCNP verification.
Named RUNPROB.BAT for PC Windows systems.
TESTINP.TAR Compressed input files for MCNP verification.
Named TESTINP.ZIP for PC Windows systems.
TESTMCTL.SYS Compressed tally output files for MCNP verification.
Named TESTMCTL.ZIP for PC Windows systems.
TESTOUTP.SYS Compressed MCNP output files for MCNP verification.
Named TESTOUTP.ZIP for PC Windows systems.
TESTDIR Cross-section directory for MCNP verification.
TESTLIB1 Cross-section data for MCNP verification.

Substitute the appropriate system identifier from the following table for the "SYS" suffix.

SYSTEM

IDENTIFIER

SYSTEM IDENTIFIER

Cray UNICOS

PC DVF Windows n/a
IBM RS/6000 AIX aix

HP-9000 HPUX
PC LINUX

ucos DEC ALPHA dec

PC Lahey Windows  n/a

Sun Solaris sun
SGI IRIX sgi
linux VAX VMS vms

The INSTALL.FIX file is used to implement corrections to either the MCNP source or the MAKEMCNP
script. The latter is important for future changes/bugs in compilers and/qr operating systems. The format
of this file is provided within INSTALL.FIX, and more details can be found in Appendix C of the MCNP




manual. The MCSETUP utility is a user-friendly interface for creating system-dependent files. The
remaining files in the first group are MCUNP related source code, and the second group of files are used
for MCNP verification (i.e. running the 29 MCNP test problems).

For PC Windows systems, one additional utility has been included: the archive utility PKUNZIP.EXE.,

For the current version of MCNP4C, VMS is not a supported system, and hence, output templates have
not been provided.

5.0 SYSTEM REQUIREMENTS

Software Requirements:

(1) AFORTRAN 77 compiler. The supported compiler for each system is listed in the 1.1 MCSETUP
menu (see below). The PC DVF compiler is FORTRAN 90 and the PC Lahey compiler is FORTRAN 95.

{2) A C compiler with an ANSI C library is required for UNIX system timing, as well as the X-Window
graphics and dynamic memory allocation options. On PC Windows systems, the Microsoft Visual C++

compiler is required to implement the X-Window graphics and dynamic memory allocation options.
A Bourne-shell command interpreter is needed to execute the installation Script on UNIX systems.

Hardware Requirements:
Minimum Recommended

RAM 2 Mbytes 16 Mbytes
Disk Space 50 Mbytes 100 Mbytes

6.0 GETTING STARTED

6.1 ON SUPPORTED SYSTEMS

Before proceeding, read the "IMPORTANT ADDITIONAL INFORMATION" section below.

On all systems, initiate the installation controller with the following commands:
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COMMANDS COMMENT

chmod a+x install UNIX systems - SYS keyword
Jinstall SYS given in the table above.
INSTALL PC Windows systems

The MCSETUP utility is initiated first. Simply alter the main menu according to the MCNP options you
desire. Note the following:

(1 Section 1.1 of the main menu SHOULD BE ALTERED FIRST. This sets the appropriate
computer system which in turn selects suitable defaults for the remaining options.

() Default responses are indicated, and these will be activated by typing a <CR>. Additional
options are also inciuded, from which the user can select the desired configuration. Several
user-specific parameters, such as the cross section data path, graphics library path, library name,
and include path may be also entered.

(3) If the dynamic memory option is turned "off", an appropriate value for the MDAS parameter
should be set (default is mdas=4000000). In general MDAS should be greater than 100000 and
less than (R-2)/4 * 1000000, where R is your availabie RAM in Mbytes.

% More information on the sefup options is available in the MCNP manual. if you are unsure as to
graphics libraries available on your system or their location, contact your system administrator.
Default library names and directory paths are supplied by the MCSETUP utility; however these
may not be applicable to your system. A FATAL error message is displayed if needed libraries
could not be located. Included in this error message is the expected library name and path.

When done altering the main menu, use the PROCESS command to continue the installation. The
MCSETUP utility creates three system dependent files: the PRPR C patch file (PATCHC), the PRPR
FORTRAN patch file (PATCHF), and the MAKEMCNP script. PATCHF and PATCHC include the
*define preprocessor directives that reflect the options chosen in the execution of the MCSETUP code.
MCSETUP also creates an ANSWER file which contains the MCSETUP input for future installations.
This file reflects all options chosen during the initial installation and can be used in future installations

by

COMMAND(S) COMMENT
Jinstall SYS < answer’ UNIX systems
INSTALL ANSWER PC Windows systems

Next, the installation controller initiates the MAKEMCNP script which creates the MCNP executable.
System differences can result in compilation errors {e.g., unsatisfied externals). If this occurs, contact
MCNP@LANL.GOV regarding a fix. In most cases a two line fix can be added to your INSTALL.FIX
file to rectify the situation (the INSTALL.FIX file included with the distribution contains examples of

such fixes).




The last section of the installation controller performs MCNP verification by running the 29 MCNP test
problems. If this step is to be omitted, rename the RUNPROB file with some other name (e.g.,
RUNPROCB.ORG). ' ‘

On most dedicated systems, compiiation time is roughly 15-30 minutes and verification an additional
20-40 minutes.

6.2 VMS System

VMS is not currently a fully supported system. The following guidelines are included as an aide to the
user.

On VMS systems, add the following line in your LOGIN.COM file to enable argument passing on the
MCNP execution line:

MCNP == §MCNP_DISK:[MCNP_PATHIMCNP.EXE

where MCNP_DISK and MCNP_PATH are the disk and directory path to be used for the MCNP
instaliation. To update this change, log back in or type @LOGIN.

To initiate the installation controller, enter COPY INSTALL.VMS INSTALL.COM, Followed by
@INSTALL at the command line.

MCSETUP creates an ANSWER file that contains the MCSETUP input for future installations. This file
reflects ail options chosen during the initial installation and can be used in future installations by entering
ASSIGN ANSWER.DAT SYSSCOMMAND, followed by @INSTALL.

A successful compilation generates an MCNP executable called MCNP.EXE on VMS. The MCNP
FORTRAN source will be called MCNP.FOR.

7.0 UPON COMPLETION

A successful compilation generates an MCNP executable, called menp on UNIX systems and
MCNP.EXE on PC Windows systems. The MCNP FORTRAN source is split into subroutines, cailed
subroutine.f on UNIX and subroutine.for on PC Windows, and is placed in the flib directory. The object
code for individual subroutines is placed in the olib directory. A normal completion results in the
following message:

Installation complete - see Readme file.

A log of the installation process is written to the INSTALL.LOG file.




An abnormal completion results in one of the following messages:

SETUP ERROR OR USER ABORT.
COMPILATION ERROR - see INSTALL.LOG file.
VERIFICATION ERROR - see INSTALL.LOG file.

The cause of the error can be found in the INSTALL.LOG file.

Upon completion of MCNP verification, 29 difm?? files will exist containing the MCNP tally differences
between your runs and the standard. Similarly, the 29 difo?? files will contain the MCNP output file
differences between your runs and the standard. Exact tracking is required for MCNP verification, thus
significant differences (i.e. other than round-off in the last digit) may prove to be serious {e.g. compiler
bugs, etc.). In such cases the INSTALL.LOG file should be reviewed to ensure that the 29 test problems
ran successfully. '

On all systems, EXACT tracking of ALL the test problems is required to verify proper code installation.
If you do not track exactly of the code crashes running the test problems, recompile using a lower
optimization and try again. If errors persist without optimization, try compiling without graphics.
Approximately 99% of installation problems are due to compiler optimization bugs, compiler bugs, bad
graphics libraries, or bad operating system environments.

8.0 IMPORTANT ADDITIONAL INFORMATION

The install.fix file contains directives to generate debuggable versions of the code for all the supported
systems. In order to activate this capability,uncomment the specified lines for the system of interest. In
particular, delete the leading "c" plus one blank space for the indicated number of lines.

8.1 Cray UNICCS

None

8.2 PC DVF Windows

For the PC Windows systems, the supported operating systems are Windows NT/9x. The code can be
installed and run from a DOS command line prompt.

The following combination of software packages are required to achieve full functionality with MCNP
on the PC DVF Windows system:




PACKAGE . VERSION  COST

Digital Visual Fortran 6.0 $799
Professional Edition

http://www .digital.com/fortran/dvf

This product is.now also known as

Compaq Visual Fortran.

Microsofi Visual C++ 6.0 $549
Professional Edition
ttp://msdn.microsoft.com/visnale

Two graphics systems are supported: X-windows graphics and DVF GuickWin.

It is important that your Path, Include, and Lib environment variables are set accordingly. To verify or
modify these settings on your PC, go to Start --> Settings --> Control Panel --> System --> Environment.
See the DVF and Microsoft Visual C-++ manuals for appropriate settings. '

The X-windows library, X11, release 6.4, X11R6.4, can be downloaded free-of-charge from the web-site
"http://www.x.org". This site contains the code needed to generate the X-windows libraries to display
MCNP geometry, cross section and tally plots. In addition, an X-windows server is required to display
the graphics. Suggested servers include ReflectionX, Exceed, and X-Deep/32. It should be noted that the
development versions of the X-servers, which may be more expensive than the standard versions, also
include the additional software necessary to generate the X11R6 development libraries. For this
application, a custom installation of the X-servers is recommended.

The following are guidelines for installing the X-Windows graphics from the www.x.org download.

It is first necessary to unpack the X11R6.4 source code release distribution (use WinZip),
compile it, and then install it. The distribution includes imake files, library files, fonts, language support
files, auxiliary programs, as well as detailed documentation. The imake utility, included in the
distribution, creates system-specific Makefiles from system-independent Imakefiles. The
system-dependent configuration parameters are defined in the file site.def. There is a sample site.def
(called site.sample) included in the distribution. Copy this file to site.def and add the following as the
second line in the file:

#define RmTreeCmd del /q /s

When installing X11R6.4, is it necessary to create the following subdirectories a priori:
\exportsiinclude

\exports\lib

Follow the directions in the documentation to build the libraries, and type the following line in your local
directory:

nmake World.Win32 > world.log

After the build has had a successful completion, install the software by typing:

nmake install > install.log

The generated files will include X11.1ib and Xlib.h, which are required for the X-Windows graphics
version on PC Windows systems.



The MCSETUP utility will query the user on the graphics library path, library filename, and include path
only for the X-windows graphics option for the PC Windows systems. There are default graphics paths,
libraries, and include paths which can be changed upon installation.

For the DVF QuickWin graphics, the execution of each problem terminates with the following message
displayed: "Program Terminated with exit code 0. Exit Window? (yes,n0)". Simply respond by clicking
Nyes'll,

Iﬁ addition, on all PC Windows systems, the graphics plots can be saved to a postscript file using the
FILE command at the PLOT or MCPLOT prompt. These postscript files can be sent to any
postscript-ready printer for printing in color or black and white.

The archive utility PKUNZIP.EXE can also be downloaded free-of-charge as a Shareware version:
http://www.pkware.com

8.3 IBM AIX

None

8.4 HP HPUX

None

8.5PCLINUX

The dynamic memory option (pointer) is not currently available with the LINUX system with the
supported operating system and compiler.

For the LINUX system, using Redhat 6.0, there is a known bug with the g77 compiler, version 05.24.
Installation and execution with this compiler version results in a verification error; the code fails to
execute test problem 14, which uses the like-but construct. This bug has been rectified in version 05.25,

which we support.

For the LINUX system, the fsplit utility is available to be downloaded free-of-charge from the following

web-site.
http://rufus.w3.org/linux/RPM/contrib/libc5/i386/fsplit-1.0-1.i386.htm]




8.6 DEC ALPHA

None

8.7 PC Lahey Windows

The following combination of software packages are required to achieve full functionality with MCNP
on PC Lahey Windows system:

PACKAGE VERSION COST

Lahey Fortran 95 5.50h $795
LFS5 PRO v5.5

Professional Edition

http://www.lahey.com

This product is now also known as

Lahey/Fujitsu Fortran 95.

Microsoft Visual C++ 6.0 $549
Professional Edition
htip://msdn.microsoft.com/visualc

Two graphics systems are supported: X-windows graphics and Lahey Winteracter.
Please see the PC DVF Windows section for additional applicability to the Lahey Fortran system.

For the Lahey Winteracter graphics, it is necessary to move all open windows to the periphery of the
windows screen in order to be enable visualization of the plot. In addition, when executing the Lahey
Winteracter version, it is recommended to minimize the number of additional open windows in your

system.

The Lahey Fortran system does not include the fsplit utility. For LF95, the Fortran 77 source code for
the fsplit utility can be downloaded free-of-charge from the following web-site:
http://members.acl.com/~Draine3/fsplit.html

After downloading the source, compile the source under the Lahey Fortran 95 compiler, and specify
name the executable as fsplit.exe.

Place this file in your local directory file-space when installing the code.

The dynamic memory option (pointer) is not currently available with the PC Lahey Fortran system with
the supported operating systems.




8.8 Sun Solaris

None

8.9 SGIIRIX

None
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README. [st for MCNP4C & MCNPDATA RSICC April 10, 2000
revised July 18, 2000
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QUICK START on Unix

gunzip -¢ /cdrom/c700tar1.gz | tar xvf -

gunzip -¢ /cdrom/d200tarl.gz | tar xvf -

Compile and run test cases as instructed in README. TXT.

************************************************************************************

QUICK START on PC
Insert distribution CD-ROM and access CD-ROM drive
Double-click on the file ¢700dos1.exe and expand files.

Open a DOS window and compile as instucted in README.TXT or copy an MCNP executable from the
EXE subdirectory and run test cases. Copy the xsdir2 file which corresponds to the executable selected
before using the binary MCNPDATA cross sections in \mcnp\xs.

cd \mcnp
copy exe\menp4_If.exe menp.exe (copy Lahey-compiled MCNP - MDAS=4,000,000)
(Test cases use TESTDIR and TESTLIB1.)

runsamps (Run 29 test cases then examine dif* files
to verify that they ran successfully.)

copy exe\xsdir2_1f xsdir (xsdir2 file written by Lahey-compiled
MAKXSF for binary MCNPDATA in mcnp\xs)

Additional details on package contents and installation are provided in the remainder of this file.
2% sk b ok ok sk e ok o 35 o o 3% ok s o e o 2k 38 ok ok ok e sk s e 3 e s ok ke s ok ok ok ok sk s o o 36 s ke ok ok Sk ok e 3k ok e s ok 3 e sk ok s ok o ok ok o 3 oK 38 e o ok o8 o 3k s 3K 3 e S ok ok ok ok kR

General info on package contents

ALERT: Extracting files from the distribution CD will create a subdirectory called "menp”. It is
recommended that you rename any existing "menp” subdirectory in the root of the drive to which you are
installing.

This distribution includes the LANL MCNPAC code system plus MCNPDATA cross sections for both
Unix and Windows operating systems. In RSICC's collection, the packages are identified as
CO0700ALLCPO1 MCNP4C and DOG20CALLCP01 MCNPDATA.

- After expanding files to your hard drive, an explanation of files and information on compiling and
running MCNP4C can be found in menp/Readme.txt, which is required reading for all users.
Executables are provided for PC Windows users. Fortran and C compilers are required on all other
systems. Various "ANSWER" files created by MCSETUP are distributed in a subdirectory and may be
used as input to MCSETUP. Running test cases is recommended on all systems. Be sure to review dif*
files and determine that your results are the same as those provided by LANL. The file "testlibl" is
included in the MCNP code package for verification purposes and is not intended for use with other
calculations.



The MCNPDATA Readme.txt and Readme_endf60.txt files contain brief descriptions of the data
libraries and are distributed with the cross sections in the menp/xs subdirectory. Note that the trailing
"1" was dropped from file names for Type 1 (ASCII) libraries.

Expanding the code system (50 MB) and binary cross section libraries (360MB) under Windows requires
~410 MB of hard disk space. Unix users need more because the ASCII cross sections require 880 MB of

hard disk space.

The MCNP4C and MCNPDATA manuals are distributed on the CD in the "DOC" subdirectory in
Portable Document Format (PDF) for viewing with the Adobe Acrobat Reader and are not distributed in
printed (hardcopy) form. To view files electronically, Acrobat Reader must be installed on your
computer. [t may be downloaded from: http//www.adobe.com/acrobat/readstep.html

The files C700DOC.PDF and D200DOC.PDF are indexed. To enable this feature, click on the Acrobat
Reader command bar to "show/hide navigation pane.”

Note that the following parts of the MCNP4C documentation (DOC/C700DOC.PDF on CD) are new:
introduction and table of contents; chapters 1, 2, 3, and 4, and appendices B, C, D, E, and J. To make a
complete document, the following were copied from the MCNP4B manual: chapter 5, appendices F, G,
H, and I. A replacement for Table G.2 of Appendix G is distributed in the MCNPDATA
(DOC/D200DOC.PDF on CD) document. LANL developers are working to complete the MCNP4C
manual revision, and documentation is being prepared for the new EL03 data library. New
documentation will be posted to the LANL web site and added to the package when it is available. See
the RSICC abstracts for a list of references distributed with the packages.

The MCNP home page is http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP. See the Electronic
Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. If
installation questions arise, e-mail pde@ornl.gov and include the exact error message to aid in
diagnosing problems.

--------------- UNIX & LINUX USERS--rmemreeemmens

Unix users should expand and extract software from the compressed tar files distributed on CD, then
follow instructions in the menp/Readme.txt file. Test case results are not provided for DEC users, who
are advised to compare with Sun results. This may be accomplished by copying the testoutp.sun to
testoutp.dec and testmctl.sun to testmetl.dec before inveking the install script.

Mount the CD-ROM (called "cdrom" in this example) and issue the following commands to extract files
into a subdirectory called "menp"” which will be created under your present working directory. The
ASCII (type 1) cross sections will be written to a subdir called "menp/xs” and may be converted to binary
(type 2) format using MAKXSF.

gzcat /edrom/c700tarl.gz | tar xvf -
gzcat /cdrom/d200tar].gz | tar xvf -

or
gunzip -¢ /cdrom/c700tarl.gz | tar xvf -
gunzip -c /cdrom/d200tarl.gz | tar xvf -



----------- ~PC WINDOWS USERS---mmermmmemm

The MCNPA4C code system is transmitted in a compressed file for PC users running Windows 9x or NT.
PKware 2.60 was used to create the self-extracting compressed files for Windows users which contain
both the MCNP4C code system with executables and cross-sections from MCNPDATA in binary format
for use on PC. Note that the menp executables are not Windows applications; they must be run from a
DOS prompt.

The initial MCNPAC release included DVF executables. In June 2000, Lahey executables were added so
that the distribution CD now includes both DVF and Lahey MCNP executables. Some users who often
do batch processing prefer to run the Lahey executables because the DVF executable requires the user to
click "Yes" to close the execution window after each run.

Distribution file C700D0OS1.exe contains executables for MCNP, PRPR and MAKXSF which were built
in a DOS window of Windows NT using compilers:

Digital Visual Fortran 6.0A and

Lahey/Fujitsu Fortran 95 Compiler Release 5.50d

The Lahey-compiled MAKXSF.EXE was used to process the MCNPDATA ASCII cross sections to
create the binary files which are distributed in the \mcnp'xs subdirectory. Both DVF- and
Lahey-compiled MCNP executables can read these files provided the corresponding XSDIR?2 file is
copied from the "exe" subdirectory to the working directory. Recl in the Lahey and DVF xsdir2 files is
different because Lahey expects record length in bytes, and DVF expects them in 4-byte units.

PC users may choose to use the binary cross sections distributed in this package or may use the ASCII
cross sections in the compressed MCNPDATA file on the CD called d200tarl.gz. This file was created
with tar and GNU gzip on a Unix workstation. Several utilities are available to expand Unix compressed
files on pc. One such utility is WinZip: http://www.winzip.com/winzip.htm

The GNU gzip and tar utilities can also be used to expand and extract data from the distribution file and
may be downloaded at no charge.

ftp://ftp.gnu.org/pub/gnu/
Click on "gzip" then get gzip-1.2.4.msdos.exe and expand it on the PC.

Type "gzip -d d200tarl.gz"

ftp://ftp.gnu.org/gnu/tar/

Get tar-1.12.msdos.exe then rename it to tar.exe and invoke by typing
"tar xvf d200tar1"

Note that this version of tar will truncate long filenames to conform
to DOS naming conventions.

Expanding files from the distribution CD will create a subdirectory called "menp" that includes the code
system with binary cross sections written in the \menp'\xs subdirectory, which is the default directory
from which the distributed executable expects to read cross section libraries.



To install MCNP4C and MCNPDATA to a Pentium running Windows 95 or later, double-click on the
file ¢700dos1.exe, ensure that "Recreate Subdirectories” is enabled and change drives if desired. Then

click OK to create an MCNP subdirectory and begin extraction of files from the CD.

See the menp\Readme.txt file for instructions on building the executables. If you wish to use the
executables included in the package, a RUNSAMPS.BAT file is provided to build a "samples”
subdirectory, extract sample problem files and invoke RUNPROB.BAT. To run test cases, open a DOS
window and change directories to the drive on which MCNP was installed, then change directories to the

menp subdirectory and type "runsamps."

The executables are distributed in a subdirectory called "exe". One must copy the selected executable to
the main menp subdirectory and rename it to "menp.exe” before executing the RUNPROB or
RUNSAMPS batch files. Copy the xsdir file which corresponds to the executable selected before using

the binary cross sections in \menp'xs.

Contents of MCNPAEXE subdirectory
fsplit.exe (can be used when compiling with LF95) ,
makxsf dvf.exe DVF-compiled MAKXSF
makxsf If.exe LF95-compiled MAKXSF
mcnpd _dvfexe DVF-comiled MCNP with MDAS=4,000,000
menp4_Iflexe LF95-comiled MCNP with MDAS=4,000,000

- menp8_dvf.exe DVF-comiled MCNP with MDAS=8,000,000
menp8_If.exe LF95-comiled MCNP with MDAS=8,000,000
prpr_dvf.exe DVF-compiled PRPR

prpr_lfexe LF95-compiled PRPR
xsdir2_dvf  XSDIR for use with binary MCNPDATA in \mcnp'xs & DVF MCNP
xsdir2_If  XSDIR for use with binary MCNPDATA in \menp\xs & LF95 MCNP

LANL results for running the test cases with both of these compilers are included in the distribution file.
The RUNPROB script compares results from the Lahey compiled executable. DVF users should copy
TESTOUTP.DVF to TESTOUTP.ZIP and TESTMCTL.DVF to TESTMCTL.ZIP before running test

cases.

On a Pentium III 550 mhz in a DOS window of Windows NT, the MCNP4C DVF executable runs all test
cases in 2 min 25 seconds . With the Lahey F95 executable, all test cases ran in 2 minutes 45 seconds.

Please note the file XSDIR included in the PC distribution contains "DATAPATH=\menp\xs". If one
alters the default directory structure or runs MCNP from a different hard drive, one may need to
manually edit the DATAPATH statement. MCNP requires the file XSDIR as input. The included
menp.exe will find XSDIR in the directory in which the executable resides or in the directory from which
the job is submitted assuming one does not alter the default directory structure. Alternately one may
specify the location on the command line:

menp inp=InputFile xsdir=d:\menp\xsdir
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1. Introduction

MCNP4CT™™! hag been released to the Radiation Safety Information Computational Center (RS-
ICC) in Oak Ridge, TN, (pdc@ornl.gov) for international distribution according to Department of

Energy (DOE) policy.

Major new features are:

..Alpha eigenvalues;

. Macrobodies;

. PC Enhancements;

—
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. Delayed Neutrons.

. Perturbation enhancements;

ENDF/B-VI improvements;

. Electron Physics Enhancements;

. Parallelization enhancements;
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. Unresolved resonance range probability tables; -

. Superimposed mesh weight window generator;
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In addition there are 30 minor features/enhancements and 65 corrections.

'MCNP is a trademark of the Hegents of the University of California, Los Alamos National Laboratory
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MCNP4C is guaranteed to be the most robust MCNP version ever. I will pay you $20 if you can
find any error that has been added since MCNP4B. ? 1 will pay you $4 in new $2 bills if you can
find a bug persisting from pre-4B versions of MCNP. The list of MCNP4B cash award winners is
given in Section V, “Corrections.”

I hereby certify MCNP4C has been developed in accordance with the MCNP Software Quality
" Assurance Plan 3, including extensive regression testing, auxiliary testing, and independent reviews.
These Software Quality Assurance practices are modeled after and we believe, comply with, the
ISO-9000 * and IEEE % SQA standards.

I1. Availability

MCNP4C, including source files and documentation ® | is available from the Radiation Safety
Information Computational Center (RSICC} in Oak Ridge, TN, (pdc@ornl.gov) for international
distribution according to Department of Energy (DOE) policy.

LANL users can get escecutables for many systems from the Common File System (CFS) at Los
Alamos node:

/x5code/tmcnpdc/ exe

We will consider installing MCNP on various networks throughout LANL and for former sponsors.
Contact Russ Mosteller, mosteller@lanl.gov.

Only sponsbrs and collaborators can get MCNP4C directly from the MCNP Monte Carlo Team
in the Diagnostic Applications Group (X-5) of the Applied Physics Division (X) at Los Alamos
National Laboratory.

ITI. Major New Features

1. Unresolved resonances: (Lee Carter, Bob Little) 7
The probability table treatment for unresolved resonance range cross sections is used whenever
the appropriate data libraries are available. The unresclved treatment has been shown to have

?Cash for bugs offer may be cancelled at any time without notice. X-5 group members ineligible, A bug is defined
as a correction to an officially distributed X-5 version of MCNP. Awards are $20 for errors in MCNP4B or later
versions; $4 for pre-MCNP4B version errors. Awards are paid only for the first identification of a bug. Awards
are not funded by taxpayer money, but rather voluntarily raised by the MCNP code developers as 2 sign of their
confidence in the code.

3Hilary M. Abhold, J ohz S. Hendricks, “MCNP Software Quality Assurance Plan,® Los Alamos National Laboratory
Report, LA-13138 (April 1996)

*ISO (International Organization for Standards), “ISQ 9000 — Interpational Standards for Quality Management,”
2nd Edition, ISO Central Secretariat, Case postale 56, CH-1211, Geneve 20, Switzerland (1992) -

S“IEEE Software Engincering Stardards Collection,” Institute of Electrical and Electronics Engineers, Inc., 345 East
47Tth Street, New York, NY 10017-2394 (April 5, 1991)

8J. F. Briesmeister, Ed., “MCNP - A General Monte Carlo N-Particle Transport Code — Version 4C, LA-12625-M
{March 2000) (to be published)

L. L. Carter, R. C. Little, I. 5. Hendricks, “New Probability Table Treatment in MCNP for Unresolved Resonances,”
1998 Radiation Protection and Shielding Division Topical Conference on Technologies for the New Century, Sheraton
Music City, Nashville, TN, vol. II, p. 341 (April 18-23, 1998)
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a significant effect for plutonium critical assemblies with intermediate spectra and substantial
increases in reactivity for systems with a large amount of 2330/ and intermediate spectra 8

Addition of the unresolved treatment to MCNP enables use of the latest ENDF/B-VI data
and improves the modeling of resonance self shielding.

User interface changes: 3rd entry on PHYS:N card will use average cross section rather than
probability table in all probability table libraries, enabling a comparison of the effect of using
the probability tables. Also, “ptable” is required in the cross section directory for probability
table libraries, which affects the X5 card and MAKXSF auxiliary code. --

2. Perturbation enhancements: (Lee Carter, John Hendricks, Gregg McKinney) ®
The differential operator perturbation capability has been extended to cross section depen-
dent tallies. The perturbed track length k.ss estimator is automatically printed in KCODE
problems with PERT cards. This extension greatly enhances the usefulness of the perturba-
tion capability in criticality problems or problems with heating tallies (F6, F7) or problems
with FM cards applied to track length (F4) tallies.

3. Supertmposed mesh weight window generator (Tom Evans, Jeff Favorite, John Hendricks)
The superimposed mesh weight window generator (MWWG) enables users to set up geome-
tries without the addition of extra cells and surfaces for geometric importances or cell-based
weight windows. The MWWG links to Justine and AVATAR and is similar to work done
at North Carolina State University ° 11, The MCNP4C superimposed mesh weight window
generator (MWWG) was developed by Tom Evans and Jeff Favorite. References: XCI:TME-
97-228, XCL.JAF-98-125, XCI:JAF-99-37, and XCI-RN(U):JSH-99-013. It is really a signifi-
cant advance in Monte Carlo and has won 2 “best papet” award from the American Nuclear
Society. 12
As part of the MWWG package, the cell-based weight windows and the cell-based weight
window generator were rewritten as well. A full assessment of the MWWG was published by
Chris Culbertson 13 The user interface is fully described in Jeff Favorite's memo, XCL:JAF-
99-37, copies of which are available from him, 505-667-7941, X-5, MS F663.

4. Alpha eigenvalues (Ken Adams, Art Forster)

*Russell D. Mosteller and Robert C. Little. “Impact of MCNP Unresolved Resonance Probability-Table Treatment
on Uranium and Plutonium Benchmarks,” Proceedings of the Sixth International Conference on Nuclear Criticality
Safety, September 20-24, 1999, Palais des Congres, Versailles, France, Vol. 2, pgs. 522-531 (September 1999)

?A. K. Hess, J. 8. Hendricks, G. W. McKinney, “Verification of the MONP Perturbation Correction Feature for
Cross-Section Dependent Tallies,” Los Alamos National Laboratory Report, L.A-13520 (October 1998)

L. Liu, R. P. Gardner, “A Geometry-Independent Fine-Mesh-Based Monte Carlo Importance Generator,“ Nuclear
Science and Engineering, 125, pp. 188-195 (1997)

“'R..P. Gardner, Lianyan Liu, “Monte Carlo Simulation of Neutron Porosity Oil Well Logging Tools: Combining the
Geometry-Independent Fine-Mesh Importance Map and One-Dimensional Diffusion Model Approaches,” Nuclear
Science and Engineering, Vol 133, p. 80-91 (1999)

12T, M. Evans, J. S. Hendricks, “An Enhanced Geometry-Independent Mesh Weight Window Generator for MCNP,”
1998 Radiation Protection and Shielding Division Topical Conference on Technologies for the New Century, Sheraton
Musie Gity, Nashville, TN, vol. [, p. 163 (April 19-23, 1998}

3. N. Culbertson, J. S. Hendricks, “Assessment of MCNP4C Weight Windows,” Los Alamos National Laboratory
Report, LA-13668 (December 1999)
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The MCNP4C Alpha eigenvalue calculator '* was developed by Ken Adams and Art Forster.

The alpha eigenvalue is :
. N = Ne*

where N is the neutron population at some time ¢ that builds up from some initial popula-
tion N,. Alpha is of interest for comparison to benchmark calculations and comparison to
deterministic transport codes such as DANTSYS. The units of alpha are generations/shake.
The alpha capability allows positive and negative alpha searches and a fixed positive or
negative alpha value to be used in a k.;; eigenvalue calculation. Negative values of alpha can
result in a time creation {n,2n) delta scattering reaction. Positive alpha is treated as time
absorption.

The alpha user interface consists of an additional entry on the KCODE card to impose a
value of alpha in a KCODE calculation; or the new ACODE card can be used to search for
alpha. The complete KCODE and ACODE card descriptions are in Appendix A.

5. Macrobodies (Lee Carter)

The MCNP surface-sense geometry is general, flexible, and very powerful. It is also very
difficult to specify at times. For example, consider specification of a hexagonal prism within

- an hexagonal prism. The MCNP4B geometry inpuf is presented in Appendix B. The new
MCNP4C macrobodies are much simpler, as also specified in Appendix B.
The MCNP4C macrobodies are basically the body geometry in the Integrated Tiger 5 (AC-
CEPT) format and they can be mixed with other MCNP surfaces. The bodies are BOX,
RPP, SPH, RCC, RHF, and HEX. These are further specified in Appendix C.
The facets of macrobodies are specified in Appendix D. The facets of the RHP in the input
file example of Appendix B for surface 10 would be 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7,
and 10.8, corresponding to surfaces 11, 12, 13, 14, 15, 16, 17, 18 in the MCNP4B input file
example. You can use facets of a macrobody for tallying, tally segments, defining other cells,
or SDEF sources starting on facets.
When plotting macrobody surfaces, a new plot command, MBODY, allows you to plot the
surface facet numbers (mbody off) or just the macrobody surface number (mbody on) (de-
fault). _
Known Deficiencies of MCNP{C Macrobody Implementation:

(a) Specifying a facet for surface read or write: SSR or SSW.

(b) Specifying a facet for a flagged surface. Now gives error message if a floating point
surface is entered. '

(c) Items that may involve a facet in PTRAK.

(d) May want to include the facet number along with the surface number in writing to and
reading from MCTAL files,

6. ENDF/B-VI ver. § Capabilities (Morgan White)

*D. Brockway, P. Soran, and P. Whalen, “Monte Carlo Eigenvalue Calculation,” Lecture Notes in Physics, “Monte-
Carlo Methods and Applications in Neutronics, Photonics, and Statistical Physics,” Proceedings, Cadarache Castle,
France, 1985, Springer- Verlag, Berlin, ISBN 3-540-16070 (1985)

'%J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdes, S. M. Seltzer, M. J. Berger, "ITS Version 3.0: The
Integrated TIGER Series of Coupled Electron/Photor Monte Carlo Transport Codcs," Sandia National Laborateries
report SAND91-1634 (March 1992)
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The nuclear data sampling routines were modified to enable utilization of the forthcoming
ENDFS65 meutron data library '®. Tabular-angular sampling distributions are added to the
MCNP ACE (A Compact ENDF) format for representing angular information in finer detail
than through the 32 equi-prdbable bin distribution 7, Further, neutrons and photons are
now handled consistently within the energy-sampling portion of laws 4, 44, and 61, which use
emission-energy tables. Finally, nearest integers were used to correct problems when using
single-precision data to carry large pointers '8 19,

7. PC Enhancements (Lee Carter/Gregg McKinney)
MCNP can now compile on PC’s with FORTRAN 90/95 using either Lahey (Version LF95
5.50h) or Digital Visual Fortran (DVF Version 6.0} compilers. Plotting is with an X-window
interface using either compiler, or can optionally be with regular Windows using Lahey with
its Winteracter plotting package or Digital Visual Fortran with its QuickWin plotting package.
A linux capability is also provided.

8. Electron Physics Enhancements (Ken Adams)
Electron physics enhancements were made to make MCNP more current with the Integrated
Tiger Series (ITS) 2°. Improvements have been made to

(a) Density effect calculation for stopping power;

(b} Radiative stopping powet;

(c) Bremsstrahlung production (spectra intensity and angular distribution);
(d) Impact ionization.

A new electron library, FL03, has also been prepared with better data.

Further, electrons have been cleaned up to (1) correct a few minor problems; (2) improve
numerical instabilities inherited from the Integrated Tiger Series; (3) isolate functionality in
separate subroutines; and (4) provide stylistic consistency with the rest of MCNP 21 '
The MCNP material card (Mn) now allows specification of conductors (cond = 1) analogous -
of the MCNP4B specification of gaseous media (gas = 1).

9. Parallelization enhancements (Larry Cox)
In MCNP4C the ability to compute on massively parallel platforms has been enhanced. Dis-
tributed memory multiprocessing (DMMP) and shared memory multiprocessing (SMMP)
methods are both supported — separately or in combination.
DMMP is supported through PVM %2, SMMP is supported through compiler directives and
system-provided subroutines on CRAY, IRIX and DEC systems. These directives and sub-

1*Morgan . White,*Modification to the MCNP ACE Routines,” XCLMCW-93-80 {g/15/99)
"Morgan C. White, “Verification of the ACE Modifications to MCNP,” XCI:MCW-99-92 (9/15/99)
' John S. Hendricks, “MCNP4C ENDF65 Capability,” X-5:J5H-99-08 (11/3/99)

¥ Morgan C. White, “Response o X-5:JSH-99-08," X-5:MCW-g9-17 {12/2/99)

#°J. A. Halbleib, R. P. Kensek, T. A. Mechlborn, G. D. Valdez, 5. M. Seltzer, M. J. Berger, "ITS Version 3.0: The
Integrated TIGER. Series of Coupled Electron/Photon Monte Carlo Transport Codcs ? Sandia National Laboratories
report SAND91-1634 (March 1992)

*John §. Hendricks, “MCNP Electror Physics Enhancements,” X-5:JSH-99-19 (12/6/99)
A, Geist, et.al,, “PVM 3 User’s Guide and Reference Manual,” ORNL/TM-12187
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routines can be mapped on the OpenMP T™ 23 standard in a one-to-one fashion. Porting
the SMMP functionalify to other systems will be straightforward. The addition of threading

. allows efficient computation on shared-memory platforms such as SGI Qrigin2000 (ASCI Blue
Mountain} hardware.

. By combining shared memory threading with distributed memory multiprocessing, most
MCNP calculations can be run efficiently on large numbers of processors for high through-
put. Clusters of multi-processor computers can be linked together to do a single calculation.
Calculation of memory intensive problems is also enhanced by the use of read-only shared
memory; only that which each thread needs to change need be duplicated.

Care has been taken to ensure that the same answer will be obtained from any processor con-
figuration for almost all problem types. Extensive testing has been done on 2000+ processors
with some calculations run on all 6144 processors of the ASCI Blue Mountain machine.
User interface change: On the MCNP execution line, tasks NxM specifies N PVM tasks and
M threads. Tasks K specifies K threads or PVM processes if only PVM is available.

10. Delayed Neuirons (Chris Werner)
A time-dependent delayed neutron treatment now produces a more accurate fission model
in fixed-source and criticality calculations 2* 25, A natural sampling of prompt and delayed
neutrons is now the default for KCODE or when TOTNU is specified. An additional de-
layed neutron biasing scheme is available because of the low probakility of a delayed neutron
occurrence. ‘
User interface change: A fourth entry, DNB, is added to the PHYS:N card:
DNB = -1 : Use delayed neutrons if total v (TOTNU card) is used and if delayed neutron
data are in the data library (default);

'DNB = 0 : Turn off delayed neutrons and use prompt treatment (present MCNP4B method);
DNB > 0 : Produce an average of DNB delayed neutrons per fission in addition to the natural
sampling of prompt neutrons (no more than 11 prompt plus delayed neutrons allowed per
fission.)

- IV. Minor New Features

1. New Installation Files: The MCNP installation files have been upgraded for MCNP4C and
newly supported systems. These files include INSTALL, INSTALL.BAT, INSTALL.FIX,
MCSETUP.ID, README. (ECS) 2/28/00
NOTE: The XS64 option is now the default for compiling MCNP which means cross sections
on 32-bit machines are no longer stored single precision. Where there are few cross sections,
the extra size does not matter. Where there are many cross sections, the extra size is crucial
so that pointers in the cross section data have more than 7-digit precision.

2. MCNP4B tracking: MCNPAC will track MCNP4B for most problems by setting the 20th
entry on the DBCN card to 1. Exceptions are some feature combinations such as forced
collisions and weight windows and some cases where MCNP4B was incorrect. (JSH, others)

3 OpenMP: http://www.openmp.org

3 Christopher J. Werner,“Modifications for MCNP4XT to Include a Delayed N eutron Treatment for Secondary Neu-
trons Produced from Fission,” XCI:CIW.99-94 (9/14/99)

5 John §. Hendricks, “MCNP4C Delayed Neutrons,” X-5:JSH-99-10 (11/9/99)
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3.

Cumulative tallies: Tallies may now be cumulatifre with correct variances supplied automat-
ically.

User interface changes: On any tally bin card (FU, FS, FM, C, E, T) adding & “C” makes
the bins cumulative. (ISH, XCL:JSH-98-39) 03/17/98

. Add pause command to plofter: A series of geometry or tally plots may now be plotted from

a command file (MCNP manual 6 page B-3, “COM command”) in which the new “PAUSE
n” command holds each picture for n seconds. If n is not provided, then each picture remains
until.the return key is struck. (JSH) 12/18/97 -

. Add level command to geometry plotter: The “LEVEL n” command causes a repeated struc-

tures geometry to plot only the nth level. A negative entry (default) causes the geometry at
all levels to be plotted. (JSH) 12/18/97

. Restructure common: Common has been rewritten to facilitate expansion, merger with MC-

NPX/LAHET, and multitasking with massively parallel computers such as ASCI Mountain-
Blue. (LIC) 09/23/98 .

. Print default importances. {RAF/JSH) 04/ 15/98

8. Enable tallying on TRCL-created surfaces. (JFB/GWM/JSH) 04/21/98

13.
- 14
15.
16.
17.
18.
19.

20.

21.

22,

23.

. Enable interrupts on 64-bit SGI (-I8 -R8 compilation) (JSH) 06/29/98
190.
11.
12.

Enable execution line messages on 64-bit SGI. (LIC) 07/02/98
Provide cleaner separation of LINUX and DEC. (GWM) 06/04,/97

Move load date and data path to very front of code so INSTALL.FIX can modify common
and yet INSTALL can still adjust DATAPATH. (JSH) 10/09/98

Add lots of warnings.

Turn off debug print and event log for multitasking. (JSH) 08/13/98

Add error trap for KCODE source on boundary. (JSH) 02/09/97

Eliminate 4A tracking fixes. (JSH) 05/01/97 _

Added suggested improvements, David Turland, dturland@awe.co.uk, for xs64 option 08,/25,98
Turn off DD diagnostics if prdmp 2j -2 (JSH) 04/21/98

Make scoring to a tally both in and out of 2a DXTRAN sphere a warning, not bad trouble.
(MCNP manual change: page 2-91, 9th line from bottom.)

Enable plottmg parallel to axis of hex prism lattices (JSH) 05/04/99 This mostly (but not
totally) corrects a limitation we've had for ten years.

Can now read ’cell’ as well as cel’ on SSW, S5R, SDEF cards ...

Warnings were added to indicate if cross sections are adjusted for thermal broadening.
(RCL/JSH) 3/08/99 Check made against epsilon, not identical femperatures. You may be
surprised to finally see which data are affected by the free gas thermal treatment.

Warn if em0 card has different number of bins than eN card (also cm0, tm0) RCL/JSH

%], F. Briesmeister, Ed., “MCNP - A Gcncral Monte Carle N-Particle Transport Code — Version 4B, LA—12625 M
(March 1997)
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04/14/99.

T

LCheck if cross section library and XSDIR temperatures are the same. Until now, there has

been nc warning and if you use anything other than our provided 'XSDIR files (especially if
you just change the data path); you could cause big problems by pushing the temperature
field past column 80. (RCL/JSH) 04/12/99

Enable different multigroup scattering laws in a single multigroup run. (RCL/KJA) 01/19/99
Protect if negative é.nd positive windows add to 0. (MCW) 01/21/00

Add white line color. (JSH) 01/04/00

Print history numbers when nps > 1.9 in tally plots (RAF/JSH) 11/30/99

Allow blank lines at end of MCTAL file. (JSH) 11/36/99

Use nearest integer for xss pointers. (JSH) 10/28/99

V. Corrections

$20 awards for finding errors in MCNP{B

In the 4 years of MCNP4B only 6 bugs were found that were not in previous versions.

1.

In some cases in MCNP4B could give silent wrong answers for near-coincident lattices. $20
to Lee Montierth (INEEL) XTM:JSH-97-208 (JSH/LLC) 09/17/97

. Correct a warning error printout, “particle exited weight window mesh ..." Note that this error

cannot be reached so that there is no effect upon anything. Nonetheless, $20 was awarded to
Alexandr Malusek ( Nuclear Physics Instute, Prague, Czech Republic) XCL:JSH-97-60 (JSH)
11/12/97

. Force PVM to free some buffers. $20 awarded to Dudley A. Raine, III, ORNL (XTM:JSH-

97-176) (GWM) 07/07/97

. Forced collision with perturbations bug. (GWM/ GWM 06/30/99) $20 bug award to Alexis

Schach von Wittenau, LLNL, XCL:JSH-99-66U

In addition, §20 awards were given to Mike Milgram, AECL, Chalk River, Canada (XTM:JSH-97-
20, 1/25/97) and Joe Chiaramonte, Schlumberger, Ridgefield, CT (XTM:JSH-97-21, 1/25/97) for
identifying bugs in a preliminary MCNP4B version that were corrected before MCNP4B went to
RSICC.

84 awards for finding errors that were in MCNP before MCNP{B

Several bugs found in MCNP4B were from earlier versions before our SQA program. These were:

1.

2.

3.

Check for unbalanced parenthesis on input cards. (XTM:J SH- -97-127) 5/19/97 $4 to David
Fuehne (LANSCE/LANL)

Correct a crash when criticizing generated weight windows. (JSH) 08/15/98 $4 Lauten
Rauber, XNH (XCI:JSH-98-119) ‘

Allow uppercase filenames entered as plot commands. (JSH) 03/02/98 $4 to Andrew Collier,
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AEC Pretoria, South Africa XCI:JSH-98-36

4. Allow plots of negative values. (LJC) 04/07/98 84 Jacek Arkuzewski, PSI, Switzerland
(XCI:JSH-98-57U)

5. Enable SI, SP, SB with Ser source. XCI: JSH-98 103 (JFB/JSH) 07/03/98 $4 Jacek Arkuzewski,
P31, Switzerland

6. Expire call kills geometry plot. ($4 Paul Bradley XNH/JSH) 08/ 03/99
7. Out of range error causes KCODE crash. $4 to Alan Wong (JSH) 10/12/99

8. Master-slave detectors fail with PD card. {RAF) 01/05/00 $4 to Ken Burn, ENEA, Ita.ly
(X-5:J5H-00-04)

Corrections identified by the MCNP staff

Most MCNP corrections are discovered by our own internal testing before users encounter them.

1. Reformulation of net multiplication in the summary table. (REP X-5:2000-14) 01/26/00
2. Correct roundoff errors for small DXTRAN sphere radii. (RAF/JSH) 07/07/98

3. Move saved variables rnb(5),rr0,ic0,iw0, from aceesf to task common for multitasking. Re-
move possible recursive calls. (RAF) 04/15/98

4. Fix common block character variable alignment problems on UNICOS ir sharing characﬁer
strings between C and FORTRAN. (LJC) 04/08/98

5. Correct printout that F8:p is not for neutrons in mode n,p (JFB/JSH) 08/17/98

6. Ensure that the only surface type appearing in a chain of different repeated structures levels
are coincident planes. (JSH) 08/17/98

7. Correct the error message, “improper geometry specification detected in unimaz.” (JSH)
12/18/97

8. Clean up “Plot plane coincident with surface” warning (JSH) 08/26/98
8. Correct color plotting streaks. (JSH) 08/24/98

10. Correct warning “One or more PVM processes have terminated prematurely.” (GWM)
07/07/97

11. Treat forced collision zero weight (which can happen in a pure absorber or capture resonance
in some new data libraries) as weight cutoff (REM/JSH) 10/19/98

12. Correct a wrong index which could affect variance reduction and tracking. (GWM) 07/07/97

13. Correct error message (use problem cell number) in error message, “contribution to DXTRAN
sphere prevented by zero importance.” (JSH) 04/21/98

14. Eliminate a superfiuous lab energy check on rest frame energy. (LJC) 03/02/98

15. Correct an incorrect argument for an evaporation spectrum in some data libraries. (No harm
since we don’t have any data libraries with this particular law.) (JCC) 03/02/98

16. Correct PERT card RXN option for photons (sometimes flags wrong reaction number with
mtp.) (JSH) 07/24/98
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17.
18.
19,

20,
21.
22,

23.

24,

Workaround an SGI multitasking compile bug which requires a save statement (JSH) 08/13/98
Prevent a crash if the relative error in a tally fluctuation chart is a true zero (EXS5) 06/61/96

Correct for the case where a MCTAL file has a code name {kod) starting with f,d,u,s,m,c,e,t_
or ft,dt,ut,st,mt,ct,et,tt. (SCF/ISH) 04/07/98 -

Correct a postscript color fill bug. (JSH) 01/13/97
Work around-a Sun compiler error. (JSH) 05/15/98

Time tallies wrong for two consecutive segment tallies RAF 03/09,/99. Affects you only if you
have both segment and time bins for the satne tally. Has been wrong forever.

Correct reading of ra{nr) where ra is dimensioned 15 and nr = 16 for cylindrical meshes. JSH
03/17/99 Affects you only if you were using Justine or AVATAR.

“perturbation disabled due to lack of tallies” no longer applies to KCODE problems. Spurious

- error message only affects intermediate MCNP4C version MCNP4XS.

25,

- 26.

27. M
28,

29.
30.
31.
32.
33.

34.

33.
36.

37.
38.

A harmless index error (because next isotope at this point is always 0} at {do 395 in oldcrd)
corrected. (MCW) 10/13/98

tallyd:

do 620 idet=i+1,i+ndet(ipt)
do 30 i=3,8

changed i to m1 in do 620. Harmless on all compilers we know,

MCPLOT “free” command does not work with Sun Solaris Change ibin to fdusmceté. Aﬁ'ects
intermediate version MCNP4XS only. (Kent Parsons XCI/LIC) 4/19/99

KCODE PERT with METHOD< 0 fails because sump accumulated during inactive cycles.
4/29/99. Affects intermediate version MCNP4XS only.

New SGI compiler fails on write(ius)947830, ... use write(ins)k (JSH/LIC) 12/10/98
Correct setenv DATAPATH utilization initialization (JSH) 11/20/98

KCODE printed negative history numbers (JSH) 12/16,/98

Eliminate the spurious error message '

Initialize je prior to call to knorm. (RDM) 12/15/99 “dxtran weight cutoffs needed with
analog capture.” when it erroneously occurs without analog capture.

Do not play the weight cutoff game in meshes with a zero weight window except at collisions
(MCNP4B did it at 1 mfp weight window checks as well as collisions but not at surfaces.)
(JSH) 09/02/99

1./sqrt{float{n)) needs to be onme/sqrt{float{n)) for character type. ACALC {Bernardette
Kirk, ORNL) 9/13/99

alpha time absorption in a void comes out as DXTRAN loss (HSTORY, label 187 should be
nter=16) (RAF) 09/24/99

Eliminate superfluous variables. (JAF) 11/05/99
Correct crashing tally plots when reading MCTAL files. (J DC/JSH) 11/ 30/ 99
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39. Correct spelling in several places. (JAF) 11/10/99
40. Correct more color plotting streaks. (JSH) 10/13/99
41. Allow interrupt for DEC on PC’s. (JTG/JSH) 09/15/99

Weight Window Generator Corrections and Enhancements:

. Exponential transform now works with mesh windows.
. Limit the weight cutoff game in zero-window cells to 1-for-2 roulette.

. Analog capture is default for surface-only window.

A R N B

. For cell-based windows, do DXTRAN weight cutoff game when other windows are done —
after collision, source, etc. Note that weight window roulette is not done where weight cutoff
is done because emerging particles may be in different window energy bins.

5. For forced collisions with surface-only windows or zero windows at collisions, do not ‘play
weight cutoff game (DXTRAN or ‘cell importance) for collided particles, but do not force
additional collisions. ' .

6. Turn off importance splitting/roulette if the weight window is turned on.

'7. Corrected long-term MCNP4B-AVATAR / forced collision bug.
8. No longer need 2nd argument, call wtwndo{mm,ww)
9. Correct misreading of cell-based windows from WWINP file.

10. Weight window game is now played straight out of source; previously, it was not played for
surface-only windows from the source. ‘
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Entry Default
NSRCK 1000
RKK 1.
IKZ - 30
KCT IKZ + 100
MSRK  4500,2*NSRCK
KNRM 0
MRKP 6500
KC8 1
ALPHA none

Note that the new- ALPHA parameter has been added and now there are defaults for a.II entries.

Entry Default

NSRCK 1000
RKK 1.
IKZ 30
KCT . IKZ 4+ 100
MSRK 4500,2*NSRCK
KNRM = 0
KALPHA 1
KALSAV automatic
KALREG KALSAV4-2
MRKP ) 6500
ALPHA 0
ALMIN 0

—192-

Appendix A -
New KCODE Card Entries

Descrlptzon
number of source histories per cycle
initial guess of k.sy¢ -
number of cycles to be skipped before begmmng '
- number of cycles to be done ‘
number of peints to allocate storage for -
normalize tallies by 0=weight/1=histories
maximum number of cycles allowed on MCTAL or RUNTPE
summary, tally information for 1=active/ O_all h1stor1es
imposed value of alpha (gen/shake)

New ACODE Card Eniries

Description
number of source h15tor1es per cycle

initial guess of k.s -

number of cycles to be skipped before beginning
number of cycles to be done .

number of points to allocate storage for
normalize tallies by 0==weight/1=histories
Alpha estimator: 1/2/3 = col/abs/trk.

4 = differential operator perturbation estimator
cycle to start averaging alphas

cycle to start In-In regression and reduce
number of internal settle cycles '
maximum number of cycles allowed on MCTAL or RUNTPE
initial guess of alpha (gen/shake) '

minimum floor value of alpha

29 February 2000
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Appendix B
Macrobody Comparison

MCNP4B hex. in hex

1100 .01 -11 12 -13 14 -15 16 -17 18
2 200 .01 -21 22 -23 24 -25 26 27 28
(11:-12:13:~-14:15:~16:17:-18)

30 21:-22:23:-24:25:-26:27:-28
11 py 2.

12 py -2.

13 p -8.6602540E-01 .5 0. 2.
14 p -8,6602540E-01 .5 0. -2. .
15 p -8.6602540E-01 -.5 0. 2.
16 p -8,6602540E-01 -.5 0. -2,
17 p=z 4.

18 pz -4,

21 -py 3.

22 py —3.

23 p ~8.6602540E-01 .5 0. 3.
24 p —-8.6602540E-01 .5 0. -3.
25 p -8.6602540E-01 = -.5 0. 3.
26 p -8.6602540E-01 -.5 0. -3.
27 pz 5,

28 pz 5.

In MCNP4C with macrobodies, this simply becomes:

MCNP4C hex in hex
1 100 .01 -10
2 200 .01 10 -20
30 20

29 February 2000
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: Appendix C
- Macrobody Specifications
BOX: Arbitrarily oriented orthogonal box (all corners 90-degrees). The specification is:

BOX Vx Vy Vz Alx Aly Alz A2x A2y A2z A3x A3y A3z

where Vx ¥y ‘fz = x,7¥.Z coordinates of cormner;
Alx Aly A1z = vector of 1st side;
A%x A2y A2z = vector of 2nd side;
A3x A3y A3z = vector of 3rd side.

For example, BOX -1 -1 -1 200 020 002 A
is a cube centered at the origin, 2¢m on a side, with
sides normal to the major axes.

RPP: Rectangular ParallelePiped, a box with surfaceé normal to the major axes. The specification
is:

RPP Imin Xmax Ymin ¥Ymax Zmin Zmax

For example, RPP -1 1 -11 -11
is the above BOX cube centered at the orlgln Zcm on a side, with
sides normal to the major axes.

SPH: Sphere. The spec1ﬁca.t1on is the same as the MCNP general sphere at x,y,z = Vx Vy Vz and
with radius = R:

SPH Vx Vy Vz R

RCC: Right Circular Cylinder; a can with base centered at Vx Vy Vz and a cylindrical axis vector
Hx Hy Hz and radius R.

RCC Vx Vy vz Hx Hy Hz B

For example, RCC 0 -50 0100 4
is a can on the y-axis, centered at the origin, 10 cm high,
with a 4 cm radius. ' '

RHP or HEX: Right Hexagonal Prism. The RHP does not exactly follow the Integrated Tiger
Series (ACCEPT) format.

REP vi v2 v3 hi h2 h3 rl r2 r3 s1 s2 s3 t1 t2 €3

where: vl v2 v3 are the x,y,z coordinates of the bottom of the hex;
hi h2 h3 is the vector from the bottom to the top: '
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a2 z-hex with height h would be 0 O &
a y-hex with height h would be 0 h 0

rl r2 r3 is the vector from the axis to the middle of the
first facet: for pitch 2p facet normal to y-axis,
ri,r2,r3 =0p 0

sl 82 s3 is the vector to the center of the 2nd facet

tl 2 t3 is the vector to the center of the 3rd facet
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Appendix D
+ Macrobody Facet Specifications

Facets are sequentially numbered as follows:

BOX 1 Plane normal to end of Alx Aly Alz
2 Plane normal tc beginning of Alx Aly Alz
3 Plane normal to end of A2x A2y A2z
4~ Plane normal to beginning of Al2x AZy A2z
5 Plane normal to end of A3x A3y A3z
6 Plane normal tc beginning of A3x A3y A3z
RPP 1 Plane Xmax
2 Plane Xmin
3 Plane Ymax
4 Plane Ymin
B Plane Zmax
8 Plane Zmin

. SPH Treated as a regular surface so no facet

RCC Cylindrical surface of radius R
Plane normal to end of Hx Hy Hz .
Plane normal to beginning of Hx Hy HEz
REHP Plane normal to end of ri r2 r3

Plane normal to beginning of rl r2 r3
Plane normal to end of si1 s2 s3
Plane normal to beginning of si s2 &3
Plane normal tc end of t1 t2 t3

Plane normal to beginning of t1 t2 t3
Plane normal to the end of hi h2 h3
Plane normal to beginning of hi h2 h3

O~ b W R W N R

Note: the facets are numbered as body number followed by a “.4 "and may be viewed in the
geometry plotter with the new MBODY=cff command. For example, the second facet of RHF
surface § is surface §.2. '

Note: The BOX or RPP may be infinite in a dimension, in which case those two facets are skipped
and the numbers of the remaining facets are decreased by two.
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FOREWORD

This manual is a practical guide for the use of our general-purpose Monte Carlo code MCNP. The
first chapter is a primer for the novice user. The second chapter describes the mathematics, data,
physics, and Monte Carlo simulation found in MCNP. This discussion is not meant to be
exhaustive---details of the particular techniques and of the Monte Carlo method itself will have to
be found elsewhere. The third chapter shows the user how to prepare input for the code. The fourth
chapter contains several examples, and the fifth chapter explains the output. The appendices show
how to use MCNP on various computer systems and also give details about some of the code
internals.

The Monte Carlo method emerged from work done at Los Alamos duringWorld War Il. The
invention is generally attributed to Fermi,von Neumann, Ulam, Metropolis, and Richtmyer. MCNP
is the successor to their work and represents over 450 person-years of development.

Neither the code nor the manual is static. The code is changed as the need arises and the manual
is changed to reflect the latest version of the code. This particular manual refers to Version 4C.

MCNP and this manual are the product of the combined effort of many people in the Diagnostics
Applications Group (X-5) in the Applied Physics Division (X Division) at the Los Alamos National
Laboratory.

The code and manual can be obtained from the Radiation Safety InformationComputational Center
(RSICC), P. O. Box 2008, Oak Ridge, TN, 37831-6362

J. F. Briesmeister
Editor

505-667-7277

email: mcnp@Ilanl.gov

April 10, 2000 iii
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Unless otherwise indicated, this information has been authored by anemployee or employees of the
University of California, operator of the Los Alamos National Laboratory under Contract No. W-
-7405--ENG--36 with the U.S. Department of Energy. The U.S. Government has rights to use,
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charge, provided that this Notice and any statement of authorship are reproduced on all copies.
Neither the government nor the University makes any warranty, express or implied, or assumes any
liability or responsibility for the use of this information.
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MCNP-A General Monte Carlo N—Particle Transport Code
Version 4C

Diagnostics Applications Group
Los Alamos National Laboratory

ABSTRACT

MCNP is a general-purpogdonte Carlo N—Particle code that can be used for neutron, photon,
electron, or coupled neutron/photon/electron transport, including the capability to calculate
eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of
materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree
elliptical tori.

Pointwise cross-section data are used. For neutrons, all reactions given in a particular cross-
section evaluation (such as ENDF/B-VI) are accounted for. Thermal neutrons are described by
both the free gas and &) models. For photons, the code takes account of incoherent and
coherent scattering, the possibility of fluorescent emission after photoelectric absorption,
absorption in pair production with local emission of annihilation radiation, and bremsstrahlung.
A continuous-slowing-down model is used for electron transport that includes positrons, k x-
rays, and bremsstrahlung but does not include external or self-induced fields.

Important standard features that make MCNP very versatile and easy to use include a powerful
general source, criticality source, and surface source; both geometry and output tally plotters; a
rich collection of variance reduction techniques; a flexible tally structure; and an extensive
collection of cross-section data.
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CHAPTER 1
MCNP AND THE MONTE CARLO METHOD

CHAPTER 1

PRIMER

WHAT IS COVERED IN CHAPTER 1

Brief explanation of the Monte Carlo method.

Summary of MCNP features.

Introduction to geometry.

Description of MCNP data input illustrated by a sample problem.
How to run MCNP.

Tips on problem setup.

Chapter 1 will enable the novice to start using MCNP, assuming very little knowledge of the Monte
Carlo method and no experience with MCNP. The primer begins with a short discussion of the
Monte Carlo method. Five features of MCNP are introduced: (1) nuclear data and reactions, (2)
source specifications, (3) tallies and output, (4) estimation of errors, and (5) variance reduction.
The third section explains MCNP geometry setup, including the concept of cells and surfaces. A
general description of an input deck is followed by a sample problem and a detailed description of
the input cards used in the sample problem. Section V tells how to run MCNP, VI lists tips for
setting up correct problems and running them efficiently, and VIl is the references for Chapter 1.
The word “card” is used throughout this document to describe a single line of input up to 80
characters.

.  MCNP AND THE MONTE CARLO METHOD

MCNP is a general-purpose, continuous-energy, generalized-geometry, time-dependent, coupled
neutron/photon/electron Monte Carlo transport code. It can be used in several transport modes:
neutron only, photon only, electron only, combined neutron/photon transport where the photons are
produced by neutron interactions, neutron/photon/electron, photon/electron, or electron/photon.
The neutron energy regime is from VeV to 20 MeV, and the photon and electron energy
regimes are from 1 keV to 1000 MeV. The capability to calculate keff eigenvalues for fissile
systems is also a standard feature.

The user creates an input file that is subsequently read by MCNP. This file contains information
about the problem in areas such as:

the geometry specification,

the description of materials and selection of cross-section evaluations,the location and
characteristics of the neutron, photon, or electron source,

the type of answers or tallies desired, and

any variance reduction techniques used to improve efficiency.
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Each area will be discussed in the primer by use of a sample problem. Remember five “rules” when
running a Monte Carlo calculation. They will be more meaningful as you read this manual and
gain experience with MCNP, but no matter how sophisticated a user you may become, never forget
the following five points:

Define and sample the geometry and source well;
You cannot recover lost information;
Question the stability and reliability of results;

e N

Be conservative and cautious with variance reduction biasing; and
5. The number of histories run is not indicative of the quality of the answer.

The following sections compare Monte Carlo and deterministic methods and provide a simple
description of the Monte Carlo method.

A. Monte Carlo Method vs Deterministic Method

Monte Carlo methods are very different from deterministic transport methods. Deterministic
methods, the most common of which is the discrete ordinates method, solve the transport equation
for the average particle behavior. By contrast, Monte Carlo does not solve an explicit equation, but
rather obtains answers by simulating individual particles and recording some aspects (tallies) of
their average behavior. The average behavior of particles in the physical system is then inferred
(using the central limit theorem) from the average behavior of the simulated particles. Not only are
Monte Carlo and deterministic methods very different ways of solving a problem, even what
constitutes a solution is different. Deterministic methods typically give fairly complete information
(for example, flux) throughout the phase space of the problem. Monte Carlo supplies information
only about specific tallies requested by the user.

When Monte Carlo and discrete ordinates methods are compared, it is often said that Monte Carlo
solves the integral transport equation, whereas discrete ordinates solves the integro-differential
transport equation. Two things are misleading about this statement. First, the integral and integro-
differential transport equations are two different forms of the same equation; if one is solved, the
other is solved. Second, Monte Carlo “solves” a transport problem by simulating particle histories
rather than by solving an equation. No transport equation need ever be written to solve a transport
problem by Monte Carlo. Nonetheless, one can derive an equation that describes the probability
density of particles in phase space; this equation turns out to be the same as the integral transport
equation.

Without deriving the integral transport equation, it is instructive to investigate why the discrete
ordinates method is associated with the integro-differential equation and Monte Carlo with the
integral equation. The discrete ordinates method visualizes the phase space to be divided into many
small boxes, and the particles move from one box to another. In the limit as the boxes get
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progressively smaller, particles moving from box to box take a differential amount of time to move

a differential distance in space. In the limit this approaches the integro-differential transport
equation, which has derivatives in space and time. By contrast, Monte Carlo transports particles
between events (for example, collisions) that are separated in space and time. Neither differential
space nor time are inherent parameters of Monte Carlo transport. The integral equation does not
have time or space derivatives.

Monte Carlo is well suited to solving complicated three-dimensional, time-dependent problems.
Because the Monte Carlo method does not use phase space boxes, there are no averaging
approximations required in space, energy, and time. This is especially important in allowing
detailed representation of all aspects of physical data.

B. The Monte Carlo Method

Monte Carlo can be used to duplicate theoretically a statistical process (such as the interaction of
nuclear particles with materials) and is particularly useful for complex problems that cannot be
modeled by computer codes that use deterministic methods. The individual probabilistic events
that comprise a process are simulated sequentially. The probability distributions governing these
events are statistically sampled to describe the total phenomenon. In general, the simulation is
performed on a digital computer because the number of trials necessary to adequately describe the
phenomenon is usually quite large. The statistical sampling process is based on the selection of
random numbers—analogous to throwing dice in a gambling casino—hence the name “Monte
Carlo.” In particle transport, the Monte Carlo technique is pre-eminently realistic (a theoretical
experiment). It consists of actually following each of many particles from a source throughout its
life to its death in some terminal category (absorption, escape, etc.). Probability distributions are
randomly sampled using transport data to determine the outcome at each step of its life.

- —» 6
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Figure 1.1 represents the random history of a neutron incident on a slab of material that can
undergo fission. Numbers between 0 and 1 are selected randomly to determine what (if any) and
where interaction takes place, based on the rules (physics) and probabilities (transport data)
governing the processes and materials involved. In this particular example, a neutron collision
occurs at event 1. The neutron is scattered in the direction shown, which is selected randomly from
the physical scattering distribution. A photon is also produced and is temporarily stored, or banked,
for later analysis. At event 2, fission occurs, resulting in the termination of the incoming neutron
and the birth of two outgoing neutrons and one photon. One neutron and the photon are banked for
later analysis. The first fission neutron is captured at event 3 and terminated. The banked neutron
is now retrieved and, by random sampling, leaks out of the slab at event 4. The fission-produced
photon has a collision at event 5 and leaks out at event 6. The remaining photon generated at
event 1 is now followed with a capture at event 7. Note that MCNP retrieves banked particles such
that the last particle stored in the bank is the first particle taken out.

This neutron history is now complete. As more and more such histories are followed, the neutron
and photon distributions become better known. The quantities of interest (whatever the user
requests) are tallied, along with estimates of the statistical precision (uncertainty) of the results.

[I. INTRODUCTION TO MCNP FEATURES

Various features, concepts, and capabilities of MCNP are summarized in this section. More detail
concerning each topic is available in later chapters or appendices.

A. Nuclear Data and Reactions

MCNP uses continuous-energy nuclear and atomic data libraries. The primary sources of nuclear
data are evaluations from the Evaluated Nuclear Data File (EN&B}em, the Evaluated Nuclear

Data Library (ENDL? and the Activation Library (ACTI?)compiIations from Livermore, and
evaluations from the Applied Nuclear Science (T-2) Gfo%ﬁat Los Alamos. Evaluated data are
processed into a format appropriate for MCNP by codes such as NO@Yprocessed nuclear

data libraries retain as much detail from the original evaluations as is feasible to faithfully
reproduce the evaluator’s intent.

Nuclear data tables exist for neutron interactions, neutron-induced photons, photon interactions,
neutron dosimetry or activation, and thermal particle scatt&@ng). Photon and electron data

are atomic rather than nuclear in nature. Each data table available to MCNP is listed on a directory
file, XSDIR. Users may select specific data tables through unique identifiers for each table, called
ZAIDs. These identifiers generally contain the atomic number Z, mass number A, and library
specifier ID.
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Over 500 neutron interaction tables are available for approximately 100 different isotopes and
elements. Multiple tables for a single isotope are provided primarily because data have been
derived from different evaluations, but also because of different temperature regimes and different
processing tolerances. More neutron interaction tables are constantly being added as new and
revised evaluations become available. Neuiratuced photon production data are given as part

of the neutron interaction tables when such data are included in the evaluations.

Photon interaction tables exist for all elements from Z = 1 through Z = 94. The data in the photon
interaction tables allow MCNP to account for coherent and incoherent scattering, photoelectric
absorption with the possibility of fluorescent emission, and pair production. Scattering angular
distributions are modified by atomic form factors and incoherent scattering functions.

Cross sections for nearly 2000 dosimetry or activation reactions involving over 400 target nuclei in
ground and excited states are part of the MCNP data package. These cross sections can be used as
energy-dependent response functions in MCNP to determine reaction rates but cannot be used as
transport cross sections.

Thermal data tables are appropriate for use witl&he) scattering treatment in MCNP. The data
include chemical (molecular) binding and crystalline effects that become important as the
neutron’s energy becomes sufficiently low. Data at various temperatures are available for light and
heavy water, beryllium metal, beryllium oxide, benzene, graphite, polyethylene, and zirconium and
hydrogen in zirconium hydride.

B. Source Specification

MCNP'’s generalized user-input source capability allows the user to specify a wide variety of
source conditions without having to make a code modification. Independent probability
distributions may be specified for the source variables of energy, time, position, and direction, and
for other parameters such as starting cell(s) or surface(s). Information about the geometrical extent
of the source can also be given. In addition, source variables may depend on other source variables
(for example, energy as a function of angle) thus extending the built-in source capabilities of the
code. The user can bias all input distributions.

In addition to input probability distributions for source variables, certain built-in functions are
available. These include various analytic functions for fission and fusion energy spectra such as
Watt, Maxwellian, and Gaussian spectra; Gaussian for time; and isotropic, cosine, and
monodirectional for direction. Biasing may also be accomplished by speciairbfuitictions.

A surface source allows particles crossing a surface in one problem to be used as the source for a

subsequent problem. The decoupling of a calculation into several parts allows detailed design or
analysis of certain geometrical regions without having to rerun the entire problem from the
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beginning each time. The surface source has a fission volume source option that starts particles
from fission sites where they were written in a previous run.

MCNP provides the user three methods to define an initial criticality source to esigéte
ratio of neutrons produced in successive generations in fissile systems.

C. Tallies and Output

The user can instruct MCNP to make various tallies related to particle current, particle flux, and
energy deposition. MCNP tallies are normalized to be per starting particle except for a few special
cases with criticality sources. Currents can be tallied as a function of direction across any set of
surfaces, surface segments, or sum of surfaces in the problem. Charge can be tallied for electrons
and positrons. Fluxes across any set of surfaces, surface segments, sum of surfaces, and in cells,
cell segments, or sum of cells are also available. Similarly, the fluxes at designated detectors (points
or rings) are standard tallies. Heating and fission tallies give the energy deposition in specified
cells. A pulse height tally provides the energy distribution of pulses created in a detector by
radiation. In addition, particles may be flagged when they cross specified surfaces or enter
designated cells, and the contributions of these flagged particles to the tallies are listed separately.
Tallies such as the number of fissions, the number of absorptions, the total helium production, or
any product of the flux times the approximately 100 standard ENDF reactions plus several
nonstandard ones may be calculated with any of the MCNP tallies. In fact, any quantity of the form

C = [@(E)f (E)CE

can be tallied, wherg(E) is the energy-dependent fluencef(@nd any product or summation

of the quantities in the cross-section libraries or a response function provided by the user. The
tallies may also be reduced by line-of-sight attenuation. Tallies may be made for segments of cells
and surfaces without having to build the desired segments into the actual problem geometry. All
tallies are functions of time and energy as specified by the user and are normalized to be per starting
particle.

In addition to the tally information, the output file contains tables of standard summary information

to give the user a better idea of how the problem ran. This information can give insight into the
physics of the problem and the adequacy of the Monte Carlo simulation. If errors occur during the
running of a problem, detailed diagnostic prints for debugging are given. Printed with each tally is
also its statistical relative error corresponding to one standard deviation. Following the tally is a
detailed analysis to aid in determining confidence in the results. Ten pass/no pass checks are made
for the user-selectable tally fluctuation chart (TFC) bin of each tally. The quality of the confidence
interval still cannot be guaranteed because portions of the problem phase space possibly still have
not been sampled. Tally fluctuation charts, described in the following section, are also
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automatically printed to show how a tally mean, error, variance of the variance, and slope of the
largest history scores fluctuate as a function of the number of histories run.

Tally results can be displayed graphically, either while the code is running or in a separate
postprocessing mode.

D. Estimation of Monte Carlo Errors

MCNP tallies are normalized to be per starting particle and are printed in the output accompanied
by a second numb&, which is the estimated relative error defined to be one estimated standard
deviation of the mea®x divided by the estimated mgan . In MCNP, the quantities required for
this error estimatethe tally and its second momerdire computed after each complete Monte
Carlo history, which accounts for the fact that the various contributions to a tally from the same
history are correlated. For a well-behaved ta&lyyill be proportional tal/ /N wherdl is the

number of histories. Thus, to half® we must increase the total number of histories fourfold. For

a poorly behaved tallyg may increase as the number of histories increases.

The estimated relative error can be used to form confidence intervals about the estimated mean,
allowing one to make a statement about what the true result is. The Central Limit Theorem states
that ad\ approaches infinity there is a 68% chance that the true result will be in the range
X(1+R) and a 95% chance in the rang€l £ 2R) It is extremely important to note that these
confidence statements refer only to piecision of the Monte Carlo calculation itself and not to
theaccumacy of the result compared to the true physical vélugtatement regarding accuracy
requires a detailed analysis of the uncertainties in the physical data, modeling, sampling
techniques, and approximations, etc., used in a calculation.

The guidelines for interpreting the quality of the confidence interval for various valRem®f
listed in Table 1.1.

TABLE 1.1:
Guidelines for Interpreting the Relative Error R’
Range of R Quality of the &lly
0.5t0 1.0 Not meaningful
0.2t00.5 Factor of a few
0.1t0 0.2 Questionable
<0.10 Generally reliable
<0.05 Generally reliable for point detectors

*R = §/Xand represents the estimated relative error at thiegel.
These interpretations & assume that all portions of the problem phase
space are being sampled well by the Monte Carlo process.
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For all tallies except next-event estimators, hereafter referred to as point detector tallies, the
guantityR should be less than 0.10 to produce generally reliable confidence intervals. Point
detector results tend to have larger third and fourth moments of the individual tally distributions,
so a smaller value d®, < 0.05 is required to produce generally reliable confidence intervals. The
estimated uncertainty in the Monte Carlo result must be presented with the tally so that all are
aware of the estimated precision of the results.

Keep in mind the footnote to Table 1.1. For example, if an important but highly unlikely particle
path in phase space has not been sampled in a problem, the Monte Carlo results will not have the
correct expected values and the confidence interval statements may not be correct. The user can
guard against this situation by setting up the problem so as not to exclude any regions of phase
space and by trying to sample all regions of the problem adequately.

Despite one’s best effort, an important path may not be sampled often enough, causing confidence
interval statements to be incorrect. To try to inform the user about this behavior, MCNP calculates
a figure of meri(FOM) for one tally bin of each tally as a function of the number of histories and
prints the results in the tally fluctuation charts at the end of the outpuEQMes defined as

FOM = 1/(R°T)

whereT is the computer time in minutes. The more efficient a Monte Carlo calculation is, the larger
the FOM will be because less computer time is required to reach a given v&tue of

The FOM should be approximately constantf#creases becau$® is proportional tdl/N and

T is proportional td\. Always examine the tally fluctuation charts to be sure that the tally appears
well behaved, as evidenced by a fairly constant F@\harp decrease in tiOM indicates that

a seldom-sampled particle path has significantly affected the tally result and relative error estimate.
In this case, the confidence intervals may not be correct for the fraction of the time that statistical
theory would indicate. Examine the problem to determine what path is causing the large scores and
try to redefine the problem to sample that path much more frequently.

After each tally, an analysis is done and additional useful information is printed about the TFC tally
bin result. The nonzero scoring efficiency, the zero and nonzero score components of the relative
error, the number and magnitude of negative history scores, if any, and the effect on the result if the
largest observed history score in the TFC were to occur again on the very next history are given. A
table just before the TFCs summarizes the results of these checks for all tallies in the problem. Ten
statistical checks are made and summarized in table 160 after each tally, with a pass yes/no
criterion. The empirical history score probability density function (PDF) for the TFC bin of each
tally is calculated and displayed in printed plots.
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The TFCs at the end of the problem include the variance of the variance (an estimate of the error
of the relative error), and the slope (the estimated exponent of the PDF large score behavior) as a
function of the number of particles started.

Allthis information provides the user with statistical information to aid in forming valid confidence
intervals for Monte Carlo results. There is no GUARANTEE, however. The possibility always
exists that some as yet unsampled portion of the problem may change the confidence interval if
more histories were calculated. Chapter 2 contains more information about estimation of Monte
Carlo precision.

E. Variance Reduction

As noted in the previous sectidR (the estimated relative error) is proportional o’ /N , Where
N is the number of histories. For a given MCNP run, the computerTic@nsumed is proportional
toN. Thus R = C/.J/T , wher& is a positive constant. There are two ways to redi¢s)
increasel and/or (2) decrease. Computer budgets often limit the utility of the first approach. For
example, if it has taken 2 hours to obt&n0.10, then 200 hours will be required to obt&r0.01.
For this reason MCNP has special variance reduction techniques for decréa@fagance is the
square of the standard deviation.) The constadépends on the tally choice and/or the sampling
choices.

1. Tally Choice

As an example of the tally choice, note that the fluence in a cell can be estimated either by a
collision estimate or a track length estimate. The collision estimate is obtained by thitying
(X=macroscopic total cross section) at each collision in the cell and the track length estimate is
obtained by tallying the distance the particle moves while inside the cell. Note thagets very

small, very few particles collide but give enormous tallies when they do, a high variance situation
(see page 2-109). In contrast, the track length estimate gets a tally from every particle that enters
the cell. For this reason MCNP has track length tallies as standard tallies, whereas the collision
tally is not standard in MCNP, except for estimatigg k

2. Nonanalog Monte Carlo

Explaining how sampling affect requires understanding of the nonanalog Monte Carlo model.

The simplest Monte Carlo model for particle transport problems is the analog model that uses the
natural probabilities that various events occur (for example, collision, fission, capture, etc.).
Particles are followed from event to event by a computer, and the next event is always sampled
(using the random number generator) from a number of possible next events according to the
natural event probabilities. This is called Hmalog Monte Carlo model because it is directly
analogous to the naturally occurring transport.
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The analog Monte Carlo model works well when a significant fraction of the particles contribute
to the tally estimate and can be compared to detecting a significant fraction of the particles in the
physical situation. There are many cases for which the fraction of particles detected is very small,
less tharL0®. For these problems analog Monte Carlo fails because few, if any, of the particles
tally, and the statistical uncertainty in the answer is unacceptable.

Although the analog Monte Carlo model is the simplest conceptual probability model, there are
other probability models for particle transport. They estimate the same average value as the analog
Monte Carlo model, while often making the variance (uncertainty) of the estimate much smaller
than the variance for the analog estimate. Practically, this means that problems that would be
impossible to solve in days of computer time can be solved in minutes of computer time.

A nonanalog Monte Carlo model attempts to follow “interesting” particles more often than
“uninteresting” ones. An “interesting” particle is one that contributes a large amount to the

guantity (or quantities) that needs to be estimated. There are many nonanalog techniques, and they
all are meant to increase the odds that a particle scores (contributes). To ensure that the average
score is the same in the nonanalog model as in the analog model, the score is modified to remove
the effect of biasing (changing) the natural odds. Thus, if a particle is artificiallyqrexles as

likely to execute a given random walk, then the particle’s score is weighted by (multiplieidloy)

The average score is thus preserved because the average score is the sum, over all random walks,
of the probability of a random walk multiplied by the score resulting from that random walk.

A nonanalog Monte Carlo technique will have the same expected tallies as an analog technique if
the expected weight executing any given random walk is preserved. For example, a particle can be
split into two identical pieces and the tallies of each piece are weighted by 1/2 of what the tallies
would have been without the split. Such nonanalog, or variance reduction, techniques can often
decrease the relative error by sampling naturally rare events with an unnaturally high frequency and
weighting the tallies appropriately.

3. Variance Reduction Tools in MCNP

There are four classes of variance reduction technfyiies range from the trivial to the esoteric.

Truncation Methodsare the simplest of variance reduction methods. They speed up calculations
by truncating parts of phase space that do not contribute significantly to the solution. The simplest
example is geometry truncation in which unimportant parts of the geometry are simply not
modeled. Specific truncation methods available in MCNP are energy cutoff and time cutoff.

Population Control Methodsise particle splitting and Russian roulette to control the number of
samples taken in various regions of phase space. In important regions many samples of low weight
are tracked, while in unimportant regions few samples of high weight are tracked. A weight
adjustment is made to ensure that the problem solution remains unbiased. Specific population
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control methods available in MCNP are geometry splitting and Russian roulette, energy splitting/
roulette, weight cutoff, and weight windows.

Modified Sampling Methodslter the statistical sampling of a problem to increase the number of
tallies per particle. For any Monte Carlo event it is possible to sample from any arbitrary
distribution rather than the physical probability as long as the particle weights are then adjusted to
compensate. Thus, with modified sampling methods, sampling is done from distributions that send
particles in desired directions or into other desired regions of phase space such as time or energy,
or change the location or type of collisions. Modified sampling methods in MCNP include the
exponential transform, implicit capture, forced collisions, source biasing, and neutron-induced
photon production biasing.

Partially-Deterministic Methodsare the most complicated class of variance reduction methods.
They circumvent the normal random walk process by using deterministic-like techniques, such as
next event estimators, or by controlling the random number sequence. In MCNP these methods
include point detectors, DXTRAN, and correlated sampling.

Variance reduction techniques, used correctly, can greatly help the user produce a more efficient
calculation. Used poorly, they can result in a wrong answer with good statistics and few clues that
anything is amiss. Some variance reduction methods have general application and are not easily
misused. Others are more specialized and attempts to use them carry high risk. The use of weight
windows tends to be more powerful than the use of importances but typically requires more input
data and more insight into the problem. The exponential transform for thick shields is not
recommended for the inexperienced user; rather, use many cells with increasing importances (or
decreasing weight windows) through the shield. Forced collisions are used to increase the
frequency of random walk collisions within optically thin cells but should be used only by an
experienced user. The point detector estimator should be used with caution, as should DXTRAN.

For many problems, variance reduction is not just a way to speed up the problem but is absolutely
necessary to get any answer at all. Deep penetration problems and pipe detector problems, for
example, will run too slowly by factors of trillions without adequate variance reduction.
Consequently, users have to become skilled in using the variance reduction techniques in MCNP.
Most of the following techniques cannot be used with the pulse height tally.

The following summarizes briefly the main MCNP variance reduction techniques. Detailed
discussion is in Chapter 2, page 2-127.

1. Energy cutoff: Particles whose energy is out of the range of interest are terminated so
that computation time is not spent following them.

2. Time cutoff Like the energy cutoff but based on time.
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10.

Geometry splitting with Russian roulettd?articles transported from a region of higher
importance to a region of lower importance (where they will probably contribute little to
the desired problem result) undergo Russian roulette; that is, some of those particles will
be killed a certain fraction of the time, but survivors will be counted more by increasing
their weight the remaining fraction of the time. In this way, unimportant particles are
followed less often, yet the problem solution remains undistorted. On the other hand, if
a particle is transported to a region of higher importance (where it will likely contribute

to the desired problem result), it may be split into two or more particles (or tracks), each
with less weight and therefore counting less. In this way, important particles are followed
more often, yet the solution is undistorted because on average total weight is conserved.

Energy splitting/Russian rouletteParticles can be split or rouletted upon entering
various usefrsupplied energy ranges. Thus important energy ranges can be sampled
more frequently by splitting the weight among several particles and less important
energy ranges can be sampled less frequently by rouletting particles.

Weight cutoff/Russian roulettetf a particle weight becomes so low that the particle
becomes insignificant, it undergoes Russian roulette. Most particles are killed, and some
particles survive with increased weight. The solution is unbiased because total weight is
conserved, but computer time is not wasted on insignificant particles.

Weight window: As a function of energy, geometrical location, or both, texgighted
particles are eliminated by Russian roulette and-lwgighted particles are split. This
technique helps keep the weight dispersion within reasonable bounds throughout the
problem. An importance generator is available that estimates the optimal limits for a
weight window.

Exponential transformation:To transport particles long distances, the distance between
collisions in a preferred direction is artificially increased and the weight is
correspondingly artifically decreased. Because large weight fluctuations often result, it
is highly recommended that the weight window be used with the exponential transform.

Implicit capture: When a patrticle collides, there is a probability that it is captured by the
nucleus. In analog capture, the particle is killed with that probability. In implicit capture,
also known as survival biasing, the particle is never killed by capture; instead, its weight
is reduced by the capture probability at each collision. Important particles are permitted
to survive by not being lost to capture. On the other hand, if particles are no longer
considered useful after undergoing a few collisions, analog capture efficiently gets rid of
them.

Forced collisions:A patrticle can be forced to undergo a collision each time it enters a
designated cell that is almost transparent to it. The particle and its weight are
appropriately splitinto a collided and uncollided part. Forced collisions are often used to
generate contributions to point detectors, ring detectors, or DXTRAN spheres.

Source variable biasingSource particles with phase space variables of more
importance are emitted with a higher frequency but with a compensating lower weight
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than are less important source particles. This technique can be used with pulse height
tallies.

11. Pointand ring detectorsWhen the user wishes to tally a flepelated quantity at a point
in space, the probability of transporting a particle precisely to that point is vanishingly
small. Therefore, pseudoparticles are directed to the point instead. Every time a particle
history is born in the source or undergoes a collision, the user may require that a
pseudoparticle be tallied at a specified point in space. In this way, many pseudoparticles
of low weight reach the detector, which is the point of interest, even though no particle
histories could ever reach the detector. For problems with rotational symmetry, the point
may be represented by a ring to enhance the efficiency of the calculation.

12. DXTRAN: DXTRAN, which stands for deterministic transport, improves sampling in
the vicinity of detectors or other tallies. It involves deterministically transporting
particles on collision to some arbitrary, uskfined sphere in the neighborhood of a
tally and then calculating contributions to the tally from these particles. Contributions to
the detectors or to the DXTRAN spheres can be controlled as a function of geometric
cell or as a function of the relative magnitude of the contribution to the detector or
DXTRAN sphere.

The DXTRAN method is a way of obtaining large numbers of particles on user—specified
“‘DXTRAN spheres.” DXTRAN makes it possible to obtain many particles in a small
region of interest that would otherwise be difficult to sample. Upon sampling a collision
or source density function, DXTRAN estimates the correct weight fraction that should
scatter toward, and arrive without collision at, the surface of the sphere. The DXTRAN
method then puts this correct weight on the sphere. The source or collision event is
sampled in the usual manner, except that the particle is killed if it tries to enter the sphere
because all particles entering the sphere have already been accounted for
deterministically.

13. Correlated samplingThe sequence of random numbers in the Monte Carlo process is
chosen so that statistical fluctuations in the problem solution will not mask small
variations in that solution resulting from slight changes in the problem specification. The
ith history will always start at the same point in the random number sequence no matter
what the previous-1 particles did in their random walks.

. MCNP GEOMETRY

We will present here only basic information about geometry setup, surface specification, and cell
and surface card input. Areas of further interest would be the complement operator, use of
parentheses, and repeated structure and lattice definitions, found in Chapter 2. Chapter 4 contains
geometry examples and is recommended as a next step. Chapter 3 has detailed information about
the format and entries on cell and surface cards and discusses macrobodies.
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The geometry of MCNP treats an arbitrary three-dimensional configuration of user-defined
materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree
elliptical tori. The cells are defined by the intersections, unions, and complements of the regions
bounded by the surfaces. Surfaces are defined by supplying coefficients to the analytic surface
equations or, for certain types of surfaces, known points on the surfaces.

MCNP has a more general geometry than is available in most combinatorial geometry codes.
Rather than combining several predefined geometrical bodies, as in a combinatorial geometry
scheme, MCNP gives the user the added flexibility of defining geometrical regions from all the first
and second degree surfaces of analytical geometry and elliptical tori and then of combining them
with Boolean operators. The code does extensive internal checking to find input errors. In addition,
the geometry-plotting capability in MCNP helps the user check for geometry errors.

MCNP treats geometric cells in a Cartesian coordinate system. The surface equations recognized
by MCNP are listed in Table 3.1 on page 3-14. The particular Cartesian coordinate system used is
arbitrary and user defined, but the rigtfgnded system shown in Figure 1.2 is often chosen.

Figure 1-2.

Using the bounding surfaces specified on cell cards, MCNP tracks particles through the geometry,
calculates the intersection of a track’s trajectory with each bounding surface, and finds the
minimum positive distance to an intersection. If the distance to the next collision is greater than
this minimum distance and there are no DXTRAN spheres along the track, the particle leaves the
current cell. At the appropriate surface intersection, MCNP finds the correct cell that the particle
will enter by checking the sense of the intersection point for each surface listed for the cell. When
a complete match is found, MCNP has found the correct cell on the other side and the transport
continues.

A. Cells

When cells are defined, an important concept is that ofémseof all points in a cell with respect
to a bounding surface. Suppose that f(x y 2) =0 is the equation of a surface in the
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problem. For any set of points,y,2, if s= 0 the points are on the surface. However, for points
not on the surface, gis negative, the points are said to have a negative sense with respect to that
surface and, conversely, a positive sensadfpositive. For example, a pointat 3 has a positive
sense with respect to the plane2 = 0 . Thatis, the equatioD = 3—-2=s =1 is
positive forx = 3 (where D = constant).

Cells are defined on cells cards. Each cell is described by a cell number, material number, and
material density followed by a list of operators and signed surfaces that bound the cell. If the sense
is positive, the sign can be omitted. The material number and material density can be replaced by
a single zero to indicate a void cell. The cell number must begin in coluran$He remaining

entries follow, separated by blanks. A more complete description of the cell card format can be
found on page 1-23. Each surface divides all space into two regions, one with positive sense with
respect to the surface and the other with negative sense. The geometry description defines the cell
to be the intersection, union, and/or complement of the listed regions.

The subdivision of the physical space into cells is not necessarily governed only by the different
material regions, but may be affected by problems of sampling and variance reduction techniques
(such as splitting and Russian roulette), the need to specify an unambiguous geometry, and the tally
requirements. The tally segmentation feature may eliminate most of the tally requirements.

Be cautious about making any one cell very complicated. With the union operator and disjointed
regions, a very large geometry can be set up with just one cell. The problem is that for each track
flight between collisions in a cell, the intersection of the track atth bounding surface of the

cell is calculated, a calculation that can be costly if a cell has many surfaces. As an example,
consider Figure 1.3a. Itis just a lot of parallel cylinders and is easy to set up. However, the cell
containing all the little cylinders is bounded by fourteen surfaces (counting a top and bottom). A
much more efficient geometry is seen in Figure 1.3b, where the large cell has been broken up into
a number of smaller cells.

Figure 1-3.
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1. Cells Defined by Intersections of Regions of Space

The intersection operator in MCNP is implicit; it is simply the blank space between two surface
numbers on the cell card.

If a cell is specified using only intersections,all points in the cell must have the same sense with
respect to a given bounding surface. This means that, for each bounding surface of a cell, all points
in the cell must remain on only one side of any particular surface. Thus, there can be no concave
corners in a cell specified only by intersections. Figure 1.4, a cell formed by the intersection of five
surfaces (ignore surface 6 for the time being), illustrates the problem of concave corners by
allowing a particle (or point) to be on two sides of a surface in one cell. Surfaces 3 and 4 form a
concave corner in the cell such that poipi@andp, are on the same side of surface 4 (that is, have

the same sense with respect to 4) but pmjm$ on the other side of surface 4 (opposite sense).
Pointsp, andps have the same sense with respect to surface 3;,bus the opposite sense. One

way to remedy this dilemma (and there are others) is to add surface 6 between the 3/4 corner and
surface 1 to divide the original cell into two cells.

p2 @

1
Figure 1-4.

With surface 6 added to Figure 1.4, the cell to the right of surface 6 is number~1 (cells indicated
by circled numbers); to the left number 2; and the outside cell number 3. The cell cards (in two
dimensions, all cells void) are

1 01 -2 -3 6
2 01 6 45

Cell 1is avoid and is formed by the intersection of the region above (positive sense) surface 1 with
the region to the left (negative sense) of surface 2 intersected with the region below (negative sense)
surface 3 and finally intersected with the region to the right (positive sense) of surface 6. Cell 2 is
described similarly.

Cell 3 cannot be specified with the intersection operator. The following section about the union
operator is needed to describe cell 3.
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2. Cells Defined by Unions of Regions of Space

The union operator, signified by a colon on the cell cards, allows concave corners in cells and also
cells that are completely disjoint. The intersection and union operators are binary Boolean
operators, so their use follows Boolean algebra methodology; unions and intersections can be used
in combination in any cell description.

Spaces on either side of the union operator are irrelevant, but remember that a space without the
colon signifies an intersection. In the hierarchy of operations, intersections are performed first and
then unions. There is no left to right ordering. Parentheses can be used to clarify operations and in
some cases are required to force a certain order of operations. Innermost parentheses are clearec
first. Spaces are optional on either side of a parenthesis. A parenthesis is equivalent to a space and
signifies an intersection.

For example, let A and B be two regions of space. The region containing points that belong to both
A and B is called the intersection of A and B. The region containing points that belong to A alone
or to B alone or to both A and B is called the union of A and B. The lined area in Figure 1.5a
represents the union of A and B (or A : B), and the lined area in Figure 1.5b represents the
intersection of A and B (or A B). The only way regions of space can be added is with the union
operator. An intersection of two spaces always results in a region no larger than either of the two
spaces. Conversely, the union of two spaces always results in a region no smaller than either of the
two spaces.

A A
B B
a b

Figure 1-5.

A simple example will further illustrate the concept of Figure 1.5 and the union operator to solidify

the concept of adding and intersecting regions of space to define a cell. See also the second example
in Chapter 4. In Figure 1.6 we have two infinite planes that meet to form two cells. Cell 1 is easy
to define; it is everything in the universe to the right of surface 1 (that is, a positive sense) that is
also in common with (or intersected with) everything in the universe below surface 2 (that is, a
negative sense). Therefore, the surface relation of cell 1is 1 -2.
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(a) (b)

Figure 1-6.

Cell 2 is everything in the universe to the left (negative sense) of surface 1 plus everything in the
universe above (positive sense) surface 2, or -1 : 2, illustrated in Figure 1.6b by all the shaded
regions of space. If cell 2 were specified as —1 2, that would represent the region of space common
to —1 and 2, which is only the cross-hatched region in the figure and is obviously an improper
specification for cell 2.

Returning to Figure 1.4 on page 1-16, if cell 1 is inside the solid black line and cell 2 is the entire
region outside the solid line, then the MCNP cell cards in two dimensions are (assuming both cells
are voids)

1 01 -2 (3:-4) 5
2 0 -5:-1:2:3 4

Cell 1 is defined as the region above surface 1 intersected with the region to the left of surface 2,
intersected with the union of regions below surfaces 3 and 4, and finally intersected with the region
to the right of surface 5. Cell 2 contains four concave corners (all but between surfaces 3 and 4),
and its specification is just the converse (or complement) of cell 1. Cell 2 is the space defined by
the region to the left of surface 5 plus the region below 1 plus the region to the right of 2 plus the
space defined by the intersections of the regions above surfaces 3 and 4.

A simple consistency check can be noted with the twocell cards above. All intersections for cell 1
become unions for cell 2 and vice versa. The senses are also reversed.

Note that in this example, all corners less than 180 degrees in a cell are handled by intersections
and all corners greater than 180 degrees are handled by unions.

To illustrate some of the concepts about parentheses, assume an intersection is thought of
mathematically as multiplication and a union is thought of mathematically as addition.
Parentheses are removed first, with multiplication being performed before addition. The cell cards
for the example cards above from Figure 1.4 may be written in the form
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1 albdc+ d [k
2 e+ a+ b+ cOd

Note that parentheses are required for the first cell but not for the second, although the second could
have been written as+ a+ b+ (clld, (e+ a+ b + (c ), (e) +(a) +(b) +(cd) , etc.

Several more examples using the union operator are given in Chapter 4. Study them to get a better
understanding of this powerful operator that can greatly simplify geometry setups.

B. Surface Type Specification

The first- and second-degree surfaces plus the fourth-degree elliptical and degenerate tori of
analytical geometry are all available in MCNP. The surfaces are designhated by mnemonics such as
C/Z for a cylinder parallel to the z-axis. A cylinder at an arbitrary orientation is designated by the
general quadratic GQ mnemonic. A paraboloid parallel to a coordinate axis is designated by the
special quadratic SQ mnemonic. The 29 mnemonics representing various types of surfaces are
listed in Table 3.1 on page 3-14.

C. Surface Parameter Specification

There are two ways to specify surface parameters in MCNP: (1) by supplying the appropriate
coefficients needed to satisfy the surface equation, and (2) by specifying known geometrical points
on a surface that is rotationally symmetric about a coordinate axis.

1. Coefficients for the Surface Equations

The first way to define a surface is to use one of the surface-type mnemonics from Table 3.1 on
page 3—14 and to calculate the appropriate coefficients needed to satisfy the surface equation. For
example, a sphere of radius 3.62-cm with the center located at the point (4,1,-3) is specified by

S 4 1 -3 362

An ellipsoid whose axes are not parallel to the coordinate axes is defined by the GQ mnemonic plus
up to 10 coefficients of the general quadratic equation. Calculating the coefficients can be (and
frequently is) nontrivial, but the task is greatly simplified by defining an auxiliary coordinate
system whose axes coincide with the axes of the ellipsoid. The ellipsoid is easily defined in terms
of the auxiliary coordinate system, and the relationship between the auxiliary coordinate system
and the main coordinate system is specified on a TRn card, described on page 3-30.

The use of the SQ (special quadratic) and GQ (general quadratic) surfaces is determined by the
orientation of the axes. One should always use the simplest possible surface in describing
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geometries; for example, using a GQ surface instead of an S to specify a sphere will require more
computational effort for MCNP.

2. Points that Define a Surface

The second way to define a surface is to supply known points on the surface. This method is
convenient if you are setting up a geometry from something like a blueprint where you know the
coordinates of intersections of surfaces or points on the surfaces. When three or more surfaces
intersect at a point, this second method also produces a more nearly perfect point of intersection if
the common point is used in the surface specification. It is frequently difficult to get complicated
surfaces to meet at one point if the surfaces are specified by the equation coefficients. Failure to
achieve such a meeting can result in the unwanted loss of particles.

There are, however, restrictions that must be observed when specifying surfaces by points that do
not exist when specifying surfaces by coefficients. Surfaces described by points must be either
skew planes or surfaces rotationally symmetric about the X, y, or z axes. They must be unique, real,
and continuous. For example, points specified on both sheets of a hyperboloid are not allowed
because the surface is not continuous. However, it is valid to specify points that are all on one sheet
of the hyperboloid. (See the X,Y,Z, and P input cards description on page 3-16 for additional
explanation.)

IV. MCNP INPUT FOR SAMPLE PROBLEM

The main inputfile for the user is the INP (the default name) file that contains the input information
to describe the problem. We will present here only the subset of cards required to run the simple
fixed source demonstration problem. All input cards are discussed in Chapter 3 and summarized in
Table 3.8 starting on page 3—148.

MCNP does extensive input checking but is not foolproof. A geometry should be checked by
looking at several different views with the geometry plotting option. You should also surround the
entire geometry with a sphere and flood the geometry with particles from a source with an inward
cosine distribution on the spherical surface, using a VOID card to remove all materials specified in
the problem. If there are any incorrectly specified places in your geometry, this procedure will
usually find them. Make sure the importance of the cell just inside the source sphere is not zero.
Then run a short job and study the output to see if you are calculating what you think you are
calculating.

The basic constants used in MCNP are printed in optional print table 98 in the output file. The units
used are:

1. lengths in centimeters,

2. energies in MeV,
3. times in shakes (1%sec),
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temperatures in Me\Kk(),

atomic densities in units of atoms/barn-cm,

mass densities in g/ém

cross sections in barns (4bcn?),

heating numbers in MeV/collision, and

atomic weight ratio based on a neutron mass of 1.008664967. In these units, Avogadro’s
number is 0.59703109 x 6.

A simple sample problem illustrated in Figure 1.7 is referred to throughout the remainder of this
chapter. We wish to start 14-MeV neutrons at a point isotropic source in the center of a small sphere
of oxygen that is embedded in a cube of carbon. A small sphere of iron is also embedded in the
carbon. The carbon is a cube 10 cm on each side; the spheres have a 0.5-cm radius and are centered
between the front and back faces of the cube. We wish to calculate the total and energy-dependent
flux in increments of 1 MeV from 1 to 14 MeV, where bin 1 will be the tally from 0 to 1 MeV

©ooN Ok

1. on the surface of the iron sphere and
2. averaged in the iron sphere volume.

This geometry has four cells, indicated by circled numbers, and eight surfaces—six planes and two
spheres. Surface numbers are written next to the appropriate surfaces. Surface 5 comes out from
the page in the +x direction and surface 6 goes back into the page in the —x direction.

2 @
z
‘©
4 3
7 Y
®
1
Figure 1-7.

With knowledge of the cell card format, the sense of a surface, and the union and intersection
operators, we can set up the cell cards for the geometry of our example problem. To simplify this
step, assume the cells are void, for now. Cells 1 and 2 are described by the following cards:

1 0 -7
2 0 -8

where the negative signs denote the regions inside (negative sense) surfaces 7 and 8. Cell 3 is

everything in the universe above surface 1 intersected with everything below surface 2 intersected
with everything to the left of surface 3 and so forth for the remaining three surfaces. The region in
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common to all six surfaces is the cube, but we need to exclude the two spheres by intersecting
everything outside surface 7 and outside surface 8. The card for cell 3 is

3 0 123456738

Cell 4 requires the use of the union operator and is similar to the idea illustrated in Figure 1.6. Cell
4 is the outside world, has zero importance, and is defined as everything in the universe below
surface 1 plus everything above surface 2 plus everything to the right of surface 3 and so forth. The
cell card for cell 4 is

4 0 1:2:3:4:5:-6

A. INP File

An input file has the following form:

Message Block } .
Blank Line Delimiter Optional
One Line Problem Title Card
Cell Cards

Blank Line Delimiter
Surface Cards

Blank Line Delimiter
Data Cards

Blank Line Terminator (optional)

Allinputlines are limited to 80 columns. Alphabetic characters can be upper, lower, or mixed case.

A $ (dollar sign) terminates data entry. Anything that follows the $ is interpreted as a comment.
Blank lines are used as delimiters and as an optional terminator. Data entries are separated by one
or more blanks.

Comment cards can be used anywhere in the INP file after the problem title card and before the
optional blank terminator card. Comment lines mus&ha somewhere in columns 1-5 followed
by at least one blank and can be a total of 80 columns long.

Cell, surface, and data cards must all begin within the first five columns. Entries are separated by

one or more blanks. Numbers can be integer or floating point. MCNP makes the appropriate
conversion. A data entry item, e.g., IMP:N or 1.1e2, must be completed on one line.
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Blanks filling the first five columns indicate a continuation of the data from the last named card.
An & (ampersand) ending a line indicates data will continue on the following card, where data on
the continuation card can be in columns 1-80.

The optional message block, discussed in detail on page 3—1, is used to change file names and
specify running options such as a continuation run. On most systems these options and files may
alternatively be specified with an execution line message (see page 1-32). Message block entries
supersede execution line entries. The blank line delimiter signals the end of the message block.

The first card in the file after the optional message block is the required problem title card. If there
is no message block, this must be the first card in the INP file. It is limited to one 80-column line
and is used as a title in various places in the MCNP output. It can contain any information you
desire but usually contains information describing the particular problem.

MCNP makes extensive checks of the input file for user errors. A FATAL error occurs if a basic
constraint of the input specification is violated, and MCNP will terminate before running any
particles. The first fatal error is real; subsequent error messages may or may not be real because
of the nature of the first fatal message.

B. Cell Cards
The cell number is the first entry and must begin in the first five columns.

The next entry is the cell material number, which is arbitrarily assigned by the user. The material
is described on a material card (Mn) that has the same material number (see page 1-29). If the cell
is a void, a zero is entered for the material number. The cell and material numbers cannot exceed
5 digits.

Next is the cell material density. A positive entry is interpreted as atom density in unité of 10
atoms/cr. A negative entry is interpreted as mass density in units of §/do density is entered
for a void cell.

A complete specification of the geometry of the cell follows. This specification includes a list of
the signed surfaces bounding the cell where the sign denotes the sense of the regions defined by the
surfaces. The regions are combined with the Boolean intersection and union operators. A space
indicates an intersection and a colon indicates a union.

Optionally, after the geometry description, cell parameters can be entered. The form is
keyword=value. The following line illustrates the cell card format:

1 1 -0.0014 -7 IMP:N=1
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Cell 1 contains material 1 with density 0.0014 gfciis bounded by only one surface (7), and has
an importance of 1. If cell 1 were a void, the cell card would be

1 0 -7 IMP:N=1

The complete cell card input for this problem (with 2 comment cards) is

c cell cards for sample problem

1 1 -0.0014 -7

2 2 -786 -8

3 3 -160 1-234-56738
4 0 -1:2:3:-4:56

¢ end of cell cards for sample problem
blank line delimiter

The blank line terminates the cell card section of the INP file. We strongly suggest that the cells be
numbered sequentially starting with one. A complete explanation of the cell card input is found in
Chapter 3, page 3-9.

C. Surface Cards

The surface number is the first entry. It must begin in columns 1-5 and not exceed 5 digits. The next
entry is an alphabetic mnemonic indicating the surface type. Following the surface mnemonic are
the numerical coefficients of the equation of the surface in the proper order. This simplified
description enables us to proceed with the example problem. For a full description of the surface
card see page 3-12.

Our problem uses planes normal to the X, y, and z axes and two general spheres. The respective
mnemonics are PX, PY, PZ, and S. Table 1.2 shows the equations that determine the sense of the
surface for the cell cards and the entries required for the surface cards. A complete list of available
surface equations is contained in Table 3.1 on page 3-14.

TABLE 1.2:
Surface Equations
Mnemonic Equation Card Entries
PX x-D=0 D
PY y-D=0
Pz x-D=0 D
S (x=%)2+(x=9)°+(z-2°-R° =0 %yZR
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For the planes, D is the point where the plane intersects the axis. If we place the origin in the center
of the 10-cm cube shown in Figure 1.7, the planes will be at x = -5, x =5, etc. The two spheres are
not centered at the origin or on an axis, so we must give the x,y,z of their center as well as their
radii. The complete surface card input for this problem is shown below. A blank line terminates the
surface card portion of the input.

C Beginning of surfaces for cube

1 Pz -5
2 Pz 5
3 PY 5
4 PY -5
5 PX 5
6 PX -5
C End of cube surfaces

7 S 0 -4 -25 .5 $oxygen sphere
8 S 0 4 4 .5 $iron sphere
blank line delimiter

D. Data Cards

The remaining data input for MCNP follows the second blank card delimiter, or third blank card if
there is a message block. The card name is the first entry and must begin in the first five columns.
The required entries follow, separated by one or more blanks.

Several of the data cards require a particle designator to distinguish between input data for
neutrons, data for photons, and data for electrons. The particle designator consists of the symbol :
(colon) and the letter N or P or E immediately following the name of the card. For example, to enter
neutron importances, use an IMP:N card; enter photon importances on an IMP:P card; enter
electron importances on an IMP:E card. No data card can be used more than once with the same
mnemonic, that is, M1 and M2 are acceptable, but two M1 cards are not allowed. Defaults have
been set for cards in some categories. A summary starting on page 3—147 shows which cards are
required, which are optional, and whether defaults exist and if so, what they are. The sample
problem will use cards in the following categories:

MCNP card name

1. mode, MODE
2. cell and surface parameters, IMP:N
3. source specification, SDEF
4. tally specification, Fn, En
5. material specification, and Mn
6. problem cutoffs. NPS
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A complete description of the data cards is found on page 3-22 in Chapter 3.
1. MODE Card
MCNP can be run in several different modes:

Mode N — neutron transport only (default)
N P — neutron and neutron-induced photon transport
P — photon transport only
E — electron transport only
P
N

E — photon and electron transport
P E — neutron, neutron-induced photon and electron transport

The MODE card consists of the mnemonic MODE followed by the choices shown above. If the
MODE card is omitted, mode N is assumed.

Mode N P does not account for photo-neutrons but only neutron-induced photons. Photon-
production cross sections do not exist for all nuclides. If they are not available for a Mode N P
problem, MCNP will print out warning messages. To find out whether a particular table for a
nuclide has photon-production cross sections available, check the Appendix G cross-section list.

Mode P or mode N P problems generate bremsstrahlung photons with a computationally expensive
thick-target bremsstrahlung approximation. This approximation can be turned off with the PHYS:E
card.

The sample problem is a neutron-only problem, so the MODE card can be omitted because MODE
N is the default.

2. Cell and Surface Parameter Cards

Most of these cards define values of cell parameters. Entries correspond in order to the cell or
surface cards that appear earlier in the INP file. A listing of all available cell and surface parameter
cards is found on page 3-32. A few examples are neutron and photon importance cards
(IMP:N,IMP:P), weight window cards (WWE:N, WWE:P, WWNi:N, WWNi:P), etc. Some

method of specifying relative cell importances is required; the majority of the other cell parameter
cards are for optional variance reduction techniques. The number of entries on a cell or surface
parameter card must equal the number of cells or surfaces in the problem or MCNP prints out a
WARNING or FATAL error message. In the case of a WARNING, MCNP assumes zeros.

The IMP:N card is used to specify relative cell importances in the sample problem. There are four

cells in the problem, so the IMP:N card will have four entries. The IMP:N card is used (a) for
terminating the particle’s history if the importance is zero and (b) for geometry splitting and
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Russian roulette to help particles move more easily to important regions of the geometry. An
IMP:N card for the sample problem is

IMP.N 1110
Cell parameters also can be defined on cell cards using the keyword=value format. If a cell
parameter is specified @my cell card, it must be specifiazhly on cell cards andot at all in the

data card section.

3. Source Specification Cards

A source definition card SDEF is one of four available methods of defining starting particles.
Chapter 3 has a complete discussion of source specification. The SDEF card defines the basic
source parameters, some of which are

POS=xyz default is 0 0 O;
CEL = starting cell number

ERG = starting energy default is 14 MeV;
WGT = starting weight default is 1;

TME = time default is O;

PAR = source particle type lforN,NP,NPE; 2forP, PE; 3forE.

MCNP will determine the starting cell number for a point isotropic source, so the CEL entry is not
always required. The default starting direction for source particles is isotropic.

For the example problem, a fully specified source card is

SDEF POS=04-25 CEL=1 ERG=14 WGT=1 TME=0 PAR=1
Neutron particles will start at the center of the oxygen sphere (0 —4 -2.5), in cell 1, with an energy
of 14 MeV, and with weight 1 at time 0. All these source parameters except the starting position
are the default values, so the most concise source card is

SDEF POS=0-4-25

If all the default conditions applied to the problem, only the mnemonic SDEF would be required.

4. Tally Specification Cards

The tally cards are used to specify what you want to learn from the Monte Carlo calculation,
perhaps current across a surface, flux at a point, etc. You request this information with one or more
tally cards. Tally specification cards are not required, but if none is supplied, no tallies will be
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printed when the problem is run and a warning message is issued. Many of the tally specification
cards describe tally “bins.” A few examples are energy (En), time (Tn), and cosine (Cn) cards.

MCNP provides six standard neutron, six standard photon, and four standard electron tallies, all
normalized to be per starting particle. Some tallies in criticality calculations are normalized

differently. Chapter 2, page 2—76, discusses tallies more completely, and Chapter 3, page 3—73, lists
all the tally cards and fully describes each one.

Tally Mnemonic Description
F1:N or F1:P or F1:E Surface current

F2:N or F2:P or F2:.E  Surface flux
F4:N or F4:P or F4&:.E  Track length estimate of cell flux

F5a:N  or Fha:P Flux at a point (point detector)
F6:N or F6:N,P Track length estimate of energy deposition
or F6:P
F7:N Track length estimate of fission energy deposition
F8:P or F8:E Energy distribution of pulses created
or F8:P,E in a detector

The tallies are identified by tally type and particle type. Tallies are given the numbers 1, 2, 4, 5, 6,
7, 8, or increments of 10 thereof, and are given the particle designator :N or :P or :E (or :N,P only
in the case of tally type 6 or P,E only for tally type 8). Thus you may have as many of any basic
tally as you need, each with different energy bins or flagging or anything else. F4:N, F14:N,
F104:N, and F234:N are all legitimate neutron cell flux tallies; they could all be for the same cell(s)
but with different energy or multiplier bins, for example. Similarly F5:P, F15:P, and F305:P are all
photon point detector tallies. Having both an F1:N card and an F1:P card in the same INP file is not
allowed. The tally number may not exceed three digits.

For our sample problem we will use Fn cards (Tally type) and En cards (Tally energy).

a. Tally (En)Cards: The sample problem has a surface flux tally and a track length cell flux
tally. Thus, the tally cards for the sample problem shown in Figure 1.7 are

F22N 8 $ flux across surface 8
FAN 2 $ tracklengthincell 2

Printed out with each tally bin is the relative error of the tally corresponding to one estimated
standard deviation. Read pageéXor an explanation of the relative error. Results are not reliable
until they become stable as a function of the number of histories run. Much information is provided
for one bin of each tally in the tally fluctuation charts at the end of the output file to help determine
tally stability. The user istrongly encouraged to look at this information carefully.
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b. Tally Eneqgy (En) Card: We wish to calculate flux in increments of 1 MeV from 14 to 1
MeV. Another tally specification card in the sample input deck establishes these energy bins.

The entries on the En card are the upper bounds in MeV of the energy bins for tally n. The entries
must be given in order of increasing magnitude. If a particle has an energy greater than the last
entry, it will not be tallied, and a warning is issued. MCNP automatically provides the total over all
specified energy bins unless inhibited by putting the symbol NT as the last entry on the selected En
card.

The following cards will create energy bins for the sample problem:

E2 123456789 10 11 12 13 14
E4 1 121 14

If no En card exists for tally n, a single bin over all energy will be used. To change this default, an
EO (zero) card can be used to set up a default energy bin structaktities. A specific En card

will override the default structure for tally n. We could replace the E2 and E4 cards with one EO
card for the sample problem, thus setting up identical bins for both tallies.

5. Materials Specification

The cards in this section specify both the isotopic composition of the materials and the cross-
section evaluations to be used in the cells. For a comprehensive discussion of materials
specification, see page 3—108.

a. Material (Mm) Card: The following card is used to specify a material for all cells
containing material m, where m cannot exceed 5 digits:

Mm ZAID, fraction ZAID, fraction,

The m on a material card corresponds to the material number on the cell card (see page 1-23). The
consecutive pairs of entries on the material card consist of the identification number (ZAID) of the
constituent element or nuclide followed by the atomic fraction (or weight fraction if entered as a
negative number) of that element or nuclide, until all the elements and nuclides needed to define
the material have been listed.

i.  Nuclide Identification Number (ZAID). This number is used to identify the
element or nuclide desired. The form of the number is ZZZAAA.nnX, where
ZZZ is the atomic number of the element or nuclide,
AAA isthe mass number of the nuclide, ignored for photons and electrons,
nn is the cross-section evaluation identifier; if blank or zero, a default
cross-section evaluation will be used, and
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X is the class of data: C is continuous energy; D is discrete reaction; T
is thermal; Y is dosimetry; P is photon; E is electron; and M is
multigroup.

For naturallg occurring elements, AAA=000. Thus ZAID=74182 represents
the isotopelm2 W, and ZAID=74000 represents the element tungsten.

ii. Nuclide Fraction. The nuclide fractions may be normalized to 1 or left
unnormalized. For example, if the material is® the fractions can be entered
as .667 and .333, or as 2 and 1 for H and O respectively. If the fractions are
entered with negative signs, they are weight fractions; otherwise they are
atomic fractions. Weight fractions and atomic fractions cannot be mixed on the
same Mm card.

The material cards for the sample problem are

M1 8016 1 $ oxygen 16
M2 26000 1 $ naturaliron
M3 6000 1 $ carbon

b. VOID Card: The VOID card removes all materials and cross sections in a problem and
sets all nonzero importances to unity. It is very effective for finding errors in the geometry
description because many particles can be run in a short time. Flooding the geometry with many
particles increases the chance of particles going to most parts of the geometry—in particular, to an
incorrectly specified part of the geometry—and getting lost. The history of a lost particle often
helps locate the geometry error. The other actions of and uses for the VOID card are discussed on
page 3-113.

The sample input deck could have a VOID card while testing the geometry for errors. When you
are satisfied that the geometry is error-free, remove the VOID card.

6. Problem Cutoffs

Problem cutoff cards are used to specify parameters for some of the ways to terminate execution
of MCNP. The full list of available cards and a complete discussion of problem cutoffs is found on
page 3-124. For our problem we will use only the history cutoff (NPS) card. The mnemonic NPS
is followed by a single entry that specifies the number of histories to transport. MCNP will
terminate after NPS histories unless it has terminated earlier for some other reason.
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7. Sample Problem Summary

The entire input deck for the sample problem follows. Recall that the input can be upper, lower, or
mixed case.

Sample Problem Input Deck

C cell cards for sample problem

1 1-0.0014 -7

2 2-7.86 -8

3 3-1.60 1-2-34-5678

4 0 -1:2:3:-4:5:-6

C end of cell cards for sample problem

C Beginning of surfaces for cube

1 PZ -5

2 Pz 5

3 PY 5

4 PY -5

5 PX 5

6 PX -5

C End of cube surfaces

7 S 0 4 25 5 $ oxygen sphere
8 S 0 4 45 $ iron sphere

blank line delimiter
IMP:N 1 1 1 O
SDEF POS=0-4-2.5

F22N 8 $ flux across surface 8
FAN 2 $ track length in cell 2
EO 1 121 14

M1 8016 1 $ oxygen 16

M2 26000 1 $ natural iron

M3 6000 1 $ carbon

NPS 100000
blank line delimiter  (optional)

V. HOW TO RUN MCNP

This section assumes a basic knowledge of UNIX. Lines the user will type are sHowarin

case typewriter style type. Press the RETURN key after each input line. MCNP is the
executable binary file and XSDIR is the cross-section directory. If XSDIR is not in your current
directory, you may need to set the environmental variable:

setenv DATAPATH /ab/cd
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where/ab/cd is the directory containing both XSDIR and the data libraries.

A.  Execution Line
The MCNP execution line has the following form:
mcnp Files Options

Files andOptions are described below. Their order on the execution line is irrelevant. If there
are no changes in default file names, nothing need be enter@tefor andOptions .

1. Files

MCNP uses several files for input and output. The file names cannot be longer than eight
characters. The files pertinent to the sample problem are shown in Table 1.3. File INP must be
present as a local file. MCNP will create OUTP and RUNTPE.

TABLE 1.3:
MCNP Files
Default File Name Description
INP Problem input specification
OUTP BCD output for printing
RUNTPE Binary start-restart data
XSDIR Cross-section directory

The default name of any of the files in Table 1.3 can be changed on the MCNP execution line by
entering

default_file_name=newname

For example, if you have an input file called MCIN and want the output file to be MCOUT and the
runtpe to be MCRUNTPE, the execution line is

mcnp inp=mcin outp=mcout runtpe=mcruntpe
Only enough letters of the default name are required to uniquely identify it. For example,
mcnp i=mcin o=mcout ru=mcrntpe

also works. If a file in your local file space has the same name as a file MCNP needs to create, the
file is created with a different uniqgue name by changing the last letter of the name of the new file
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to the next letter in the alphabet. For example, if you already have an OUTP, MCNP will create
ouTQ.

Sometimes it is useful for all files from one run to have similar names. If your input file is called
JOB1, the following line

mcnp name=jobl

will create an OUTP file called JOB10O and a RUNTPE file called JOB1R. If these files already
exist, MCNP will NOT overwrite them, but will issue a message that JOB10O already exists and
then will terminate.

2. Options

There are two kinds of options: program module execution options and other options. Execution
options are discussed next.

MCNP consists of five distinct execution operations, each given a module name. These operations,
their corresponding module names, and a one-letter mnemonic for each operation are listed in
Table 1.4.

TABLE 1.4:
Execution Options
Mnemonic Module Operation
i IMCN Process problem input file
PLOT Plot geometry

XACT Process cross sections
MCRUN Particle transport
MCPLOT  Plot tally results or cross section data

N = X ©

WhenOptions are omitted, the default isr. The execution of the modules is controlled by
entering the proper mnemonic on the execution line. If more than one operation is desired, combine
the single characters (in any order) to form a string. Examples of use are as fditolwsk for

input errorsjp to debug a geometry by plottingz to plot cross-section data, antb plot tally

results from the RUNTPE file.

After a job has been run, the BCD print file OUTP can be examined with an editor on the computer
and/or sent to a printer. Numerous messages about the problem execution and statistical quality of
the results are displayed at the terminal.
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The “other” options add more flexibility when running MCNP and are shown in Table 1.5.

TABLE 1.5:
Other Options
Mnemonic Operation
Cm Continue a run starting withtﬁ'dump. If m is omitted, last dump is used.
See page 3-2
CN Like C, but dumps are written immediately after the fixed part of the

RUNTPE, rather than at the end. See page 3-2
DBUG n Write debug information every n particles. See DBCN card, page 3—130

NOTEK Indicates that your terminal has no graphics capability. PLOT outputis in
PLOTM.PS. Equivalentto TERM=0. See

FATAL Transport particles and calculate volumes even if fatal errors are found.

PRINT Create the full output file; equivalent to PRINT card. See page 3-134

TASKS n Invokes multiprocessing on common or distributed memory systems.
n=number of processors to be used.
—n is allowed only on distributed memory systems to disable load
balancing and fault tolerance, increasing system efficiency.

The TASK option must be used to invoke multiprocessing on common or distributed memory
computer systems and is followed by the number of tasks or CPUs to be used for particle tracking.
The multiprocessing capability must be invoked at the time of compilation to create a compatible
executable. Two compilation options exist: common memory systems (UNICOS, etc.) and
distributed memory systems (workstation clusters, Cray T3D, etc.) While multiprocessing on
common memory systems is invoked and handled by the compiler with compiler directives, on
distributed memory systems it is performed by the software communications package Parallel
Virtual Machiné (PVM). Thus, using this capability on distributed memory systems requires the
installation and execution of PVH.On such systems, a negative entry following the TASKS
option will maximize efficiency for homogeneous dedicated systems (e.g., workstation with
multiple CPUs). For heterogeneous or multiuser systems, a positive entry should be used, in which
case load balancing and fault tolerance are enadieteither case, the absolute value of this entry
indicates the number of hosts (or CPUs) available for use during particle tracking. On both
common and distributed memory systems, a table is provided in the output file that lists the number
of particles tracked by each host.

mcnp i=input o=output tasks 8

Indicates eight processors are to be used for particle tracking. On a common memory system, eight
tasks are initiated (if fewer processors are actually available, multiple tasks are run on each
processor.) On a distributed memory system, the master task and one subtask are initiated on the
primary host (i.e., machine from which the execution is initiated), and a subtask is initiated on each
of the seven secondary hosts.
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mcnp name=inp tasks -4

A negative entry following the TASKS option is allowed only on a distributed memory system and

is recommended for homogeneous dedicated systems. As in the previous example, the master task
and one subtask are initiated on the primary host, and a subtask is initiated on each of the three
secondary hosts. The negative entry disables load balancing and fault tolerance, increasing system
efficiency.

B. Interrupts

MCNP allows four interactive interrupts while it is running:

(ctrl c)<cr> (default)  MCNP status

(ctrl c)s MCNP status

(ctrl c)m Make interactive plots of tallies

(ctrl ©)q Terminate MCNP normally after current history
(ctrl ©)k Kill MCNP immediately

The (ctrl c)s interrupt prints the computer time used so far, the number of particles run so far, and
the number of collisions. In the IMCN module, it prints the input line being processed. In the
XACT module, it prints the cross section being processed.

The (ctrl ¢)q interrupt has no effect until MCRUN is executed. (Ctrl c)q causes the code to stop
after the current particle history, to terminate “gracefully,” and to produce a final print output file
and RUNTPE file.

The (ctrl c)k interrupt kills MCNP immediately, without normal termination. If (ctrl c)k fails, enter
(ctrl ¢) three or more times in a row.

C. Running MCNP

To run the example problem, have the input file in your current directory. For illustration, assume
the file is called SAMPLE. Type

mcnp n=sample
where n uniquely identifies NAME. MCNP will produce an output file SAMPLEO that you can
examine at your terminal, send to a printer, or both. To look at the geometry with the PLOT module

using an interactive graphics terminal, type in

mcnp ip n=sample
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After the plot prompplot > appears, type in

This plot will show an intersection of the surfaces of the problem by theeptan Owith an extent
in the x-direction of 20 cm on either side of the origin. If you want to do more with PLOT, see the
instructions on page B-1. Otherwise type “end” after the next prompt to terminate the session.

VI.

This section has a brief checklist of helpful hints that apply to three phases of your calculation:
defining and setting up the problem, preparing for the long computer runs that you may require,
and making the runs that will give you results. Not everything mentioned in the checklist has been
covered in this chapter, but the list can serve as a springboard for further reading in preparation for

px=0 ex=20

TIPS FOR CORRECT AND EFFICIENT PROBLEMS

tackling more difficult problems.

A.

1-36

Problem Setup

©CoNoOk~wWNE

Model the geometry and source distribution accurately.

Use the best problem cutoffs.

Use zero (default) for the neutron energy cutoff (MODE N P).
Do not use too many variance reduction techniques.

Use the most conservative variance reduction techniques.
Do not use cells with many mean free paths.

Use simple cells.

Use the simplest surfaces.

Study warning messages.

. Always plot the geometry.

Use the VOID card when checking geometry.

Use separate tallies for the fluctuation chart.

Generate the best output (consider PRINT card).

RECHECK the INP file (materials, densities, masses, sources, etc.).
GARBAGE into code = GARBAGE out of code.

Preproduction

arwpdE

Run some short jobs.

Examine the outputs carefully.

Study the summary tables.

Study the statistical checks on tally quality and the sources of variance.
Compare the figures of merit and variance of the variance.
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Consider the collisions per source particle.
Examine the track populations by cell.
Scan the mean free path column.

Check detector diagnostic tables.
Understand large detector contributions.

. Strive to eliminate unimportant tracks.

Check MODE N P photon production.
Do a back-of-the-envelope check of the results.
DO NOT USE MCNP AS A BLACK BOX.

Production

ounkwnhpE

Save RUNTPE for expanded output printing, continue run, tally plotting.

Look at figure of merit stability.

Make sure answers seem reasonable.

Make continue runs if necessary.

See if stable errors decreaselby/N (that is, be careful of the brute force approach).
Remember, accuracy is only as good as the nuclear data, modeling, MCNP sampling
approximations, etc.
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CHAPTER 2
GEOMETRY, DATA, PHYSICS, AND MATHEMATICS
.  INTRODUCTION

Chapter 2 discusses the mathematics and physics of MCNP, including geometryseotiss
libraries, sources, variance reduction schemes, Monte Carlo simulation of neutron and photon
transport, and tallies. This discussion is not meant to be exhaustive; many details of the particular
techniques and of the Monte Carlo method itself will be found elsewhere. Carter and Cashwell's
bookParticle-Transport Simulation with the Monte Carlo Methba good general reference on
radiation transport by Monte Carlo, is based upon what is in MCNP. A more recent reference is
Lux and Koblinger's bookylonte Carlo Particle Transport Methods: Neutron and Photon
Calculations® Methods of sampling from standard probability densities are discussed in the
Monte Carlo samplers by Everett and Cashwell.

MCNP was originally developed by the Monte Carlo Group, currently the Diagnostic
Applications Group, (Group X-5) in the Applied Physics Division (X Division) at the Los
Alamos National Laboratory. Group X-5 improves MCNP (releasing a new version every two
to three years), maintains it at Los Alamos and at other laboratories where we have collaborators
or sponsors, and provides limited free consulting and support for MCNP users. MCNP is
distributed to other users through the Radiation Safety Information Computational Center
(RSICC) at Oak Ridge, Tennessee, and the OECD/NEA data bank in Paris, France.

MCNP has approximately 48,000 lines of FORTRAN and 1000 lines of C source coding,
including comments, and with the COMMON blocks listed only once and not in every
subroutine. There are about 385 subroutines. There is only one source code; it is used for all
systems. At Los Alamos, there are about 250 active users. Worldwide, there are about 3000
active users at about 200 installations.

MCNP takes advantage of parallel computer architectures. It is supported in multitasking mode
on some mainframes and in multiprocessing mode on a cluster of workstations where the
distributed processing uses the Parallel Virtual Machine (PVM) software from Oak Ridge.

MCNP has not been successfully vectorized because the overhead required to set up and break
apart vector queues at random decision points is greater than the savings from vectorizing the
simple arithmetic between the decision points. MCNP (and any general Monte Carlo code) is
little more than a collection of random decision points with some simple arithmetic in between.
Because MCNP does not take advantage of vectorization, it is fairly inefficient on vectorized
computers. In particular, many workstations and PCs run MCNP as fast or faster than
mainframes. MCNP has been made as system independent as possible to enhance its portability,
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and has been written to comply with the ANSI FORTRAN 77 standard. With one source code,
MCNP is maintained on many platforms.

A.  History

The Monte Carlo method is generally attributed to scientists working on the development of
nuclear weapons in Los Alamos during the 1940s. However, its roots go back much farther.

Perhaps the earliest documented use of random sampling to solve a mathematical problem was
that of Compte de Buffon in 1772A century later people performed experiments in which they
threw a needle in a haphazard manner onto a board ruled with parallel straight lines and inferred
the value ofit from observations of the number of intersections between needle armtifines.
Laplace suggested in 1786 thatould be evaluated by random sampliigord Kelvin appears

to have used random sampling to aid in evaluating some time integrals of the kinetic energy that
appear in the kinetic theory of gassasd acknowledged his secretary for performing

calculations for more than 5000 collisiohs.

According to Emilio Segre, Enrico Fermi's student and collaborator, Fermi invented a form of
the Monte Carlo method when he was studying the moderation of neutrons in R8fieough

Fermi did not publish anything, he amazed his colleagues with his predictions of experimental
results. After indulging himself, he would reveal that his “guesses” were really derived from the
statistical sampling techniques that he performed in his head when he couldn't fall asleep.

During World War Il at Los Alamos, Fermi joined many other eminent scientists to develop the
first atomic bomb. It was here that Stan Ulam became impressed with electromechanical
computers used for implosion studies. Ulam realized that statistical sampling techniques were
considered impractical because they were long and tedious, but with the development of
computers they could become practical. Ulam discussed his ideas with others like

John von Neumann and Nicholas Metropolis. Statistical sampling techniques reminded
everyone of games of chance, where randomness would statistically become resolved in
predictable probabilities. It was Nicholas Metropolis who noted that Stan had an uncle who
would borrow money from relatives because he “just had to go to Monte Carlo” and thus named
the mathematical method “Monte Carf§.”

Meanwhile, a team of wartime scientists headed by John Mauchly was working to develop the
first electronic computer at the University of Pennsylvania in Philadelphia. Mauchly realized
that if Geiger counters in physics laboratories could count, then they could also do arithmetic
and solve mathematical problems. When he saw a seemingly limitless array of women cranking
out firing tables with desk calculators at the Ballistic Research Laboratory at Aberdeen, he
proposed’ that an electronic computer be built to deal with these calculations. The result was
ENIAC (Electronic Numerical Integrator and Computer), the world’s first computer, built for
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Aberdeen at the University of Pennsylvania. It had 18,000 double triode vacuum tubes in a
system with 500,000 solder joint3.

John von Neumann was a consultant to both Aberdeen and Los Alamos. When he heard about
ENIAC, he convinced the authorities at Aberdeen that he could provide a more exhaustive test
of the computer than mere firing-table computations. In 1945 John von Neumann, Stan Frankel,
and Nicholas Metropolis visited the Moore School of Electrical Engineering at the University of
Pennsylvania to explore using ENIAC for thermonuclear weapon calculations with Edward
Teller at Los Alamos? After the successful testing and dropping of the first atomic bombs a few
months later, work began in earnest to calculate a thermonuclear weapon. On March 11, 1947,
John von Neumann sent a letter to Robert Richtmyer, leader of the Theoretical Division at Los
Alamos, proposing use of the statistical method to solve neutron diffusion and multiplication
problems in fission devicé€ His letter was the first formulation of a Monte Carlo computation

for an electronic computing machine. In 1947, while in Los Alamos, Fermi invented a
mechanical device called FERMIA&to trace neutron movements through fissionable materials

by the Monte Carlo Method.

By 1948 Stan Ulam was able to report to the Atomic Energy Commission that not only was the
Monte Carlo method being successfully used on problems pertaining to thermonuclear as well
as fission devices, but also it was being applied to cosmic ray showers and the study of partial
differential equations®In the late 1940s and early 1950s, there was a surge of papers describing
the Monte Carlo method and how it could solve problems in radiation or particle transport and
other aread?131“Many of the methods described in these papers are still used in Monte Carlo
today, including the method of generating random numbasgd in MCNP. Much of the

interest was based on continued development of computers such as the Los Alamos MANIAC
(Mechanical Analyzer, Numerical Integrator, and Computer) in March, 1952.

The Atomic Energy Act of 1946 created the Atomic Energy Commission to succeed the
Manhattan Project. In 1953 the United States embarked upon the “Atoms for Peace” program
with the intent of developing nuclear energy for peaceful applications such as nuclear power
generation. Meanwhile, computers were advancing rapidly. These factors led to greater interest
in the Monte Carlo method. In 1954 the first comprehensive review of the Monte Carlo method
was published by Herman Katfrand the first book was published by Cashwell and Evérett

in 1959.

At Los Alamos, Monte Carlo computer codes developed along with computers. The first Monte
Carlo code was the simple 48tep computing sheet in John von Neumann's letter to Richtmyer.
But as computers became more sophisticated, so did the codes. At first the codes were written
in machine language and each code would solve a specific problem. In the early 1960s, better
computers and the standardization of programming languages such as FORTRAN made possible
more general codes. The first Los Alamos gengratpose particle transport Monte Carlo code

was MCS!® written in 1963. Scientists who were not necessarily experts in computers and
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Monte Carlo mathematical techniques now could take advantage of the Monte Carlo method for
radiation transport. They could run the MCS code to solve modest problems without having to
do either the programming or the mathematical analysis themselves. MCS was followed by
MCN®in 1965. MCN could solve the problem of neutrons interacting with matter in a three
dimensional geometry and used physics data stored in separate;-théayelpped libraries.

In 1973 MCN was merged with MC& a Monte Carlo gamma code that treated higher energy
photons, to form MCNG, a coupled neutrgamma code. In 1977 MCNG was merged with
MCP?2%a Monte Carlo Photon code with detailed physics treatment down to 1 keV, to accurately
model neutron-photon interactions. The code has been known as MCNP ever since. Though at
first MCNP stood foMonte CarloNeutronPhoton, now it stands fédonte CarloN-Particle.

Other major advances in the 70s included the present generalized tally structure, automatic
calculation of volumes, and a Monte Carlo eigenvalue algorithm to detekggine  for nuclear
criticality (KCODE).

In 1983 MCNP3 was released, entirely rewritten in ANSI standard FORTRAN 77. MCNP3 was
the first MCNP version internationally distributed through the Radiation Shielding and
Information Center at Oak Ridge, Tennessee. Other 1980s versions of MCNP were MCNP3A
(1986) and MCNP3B (1988), that included tally plotting graphics (MCPLOT), the present
generalized source, surface sources, repeated structures/lattice geometries, and multigroup/
adjoint transport.

MCNP4 was released in 1990 and was the first UNIX version of the code. It accommodated N
particle transport and multitasking on parallel computer architectures. MCNP4 added electron
transport (patterned after the Integrated TIGER Series (ITS) contiralowsng-down
approximation physicsY: the pulse height tally (F8), a thielarget bremsstrahlung

approximation for photon transport, enabled detectors and DXTRAN with dh@) $fermal
treatment, provided greater random number control, and allowed plotting of tally results while
the code was running.

MCNP4A, released in 1993, featured enhanced statistical analysis, distributed processor
multitasking for running in parallel on a cluster of scientific workstations, new photon libraries,
ENDF/B-VI capabilities, color XWindows graphics, dynamic memory allocation, expanded
criticality output, periodic boundaries, plotting of particle tracks via SABRINA, improved tallies
in repeated structures, and many smaller improvements.

MCNP4B, released in 1997, featured differential operator perturbations, enhanced photon
physics equivalent to ITS3.0, PVM load balance and fault tolerance, cross section plotting,
postscript file plotting, 64bit workstation upgrades, PCindows, inclusion of LAHET
HMCNP, lattice universe mapping, enhanced neutron lifetimes, coinegiefdce lattice
capability, and many smaller features and improvements.
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MCNPA4C, released in 2000 features an unresolved resonance treatment, macrobodies,
superimposed importance mesh, perturbation enhancements, electron physics enhancements, an
alpha eigenvalue search, plotter upgrades, cumulative tallies, parallel enhancements and other
small features and improvements.

Large production codes such as MCNP have revolutionized sctennet only in the way it is

done, but also by becoming the repositories for physics knowledge. MCNP represents about 500
person-years of sustained effort. The knowledge and expertise contained in MCNP is
formidable.

Current MCNP development is characterized by a strong emphasis on quality control,
documentation, and research. New features continue to be added to the code to reflect new
advances in computer architecture, improvements in Monte Carlo methodology, and better
physics models. MCNP has a proud history and a promising future.

B. MCNP Structure

MCNP is written in the style of Dr. Thomas N. K. Godfrey, the principal MCNP programmer
from 1975-1989. Variable dimensions for arrays are achieved by massive use of
EQUIVALENCE statements and offset indexing. All variables local to a routine are no more
than two characters in length, and all COMMON variables are between three and six characters
in length. The code strictly complies with the ANSI FORTRAN 77 standard. The principal
characteristic of Tom Godfrey’s style is its terseness. Everything is accomplished in as few lines
of code as possible. Thus MCNP does more than some other codes that are more than ten times
larger. It was Godfrey’s philosophy that anyone can understand code at the highest level by
making a flow chart and anyone can understand code at the lowest level (one FORTRAN line);
it is the intermediate level that is most difficult. Consequently, by using a terse programming
style, subroutines could fit within a few pages and be most easily understood. Tom Godfrey’s
style is clearly counter to modern computer science programming philosophies, but it has served
MCNP well and is preserved to provide stylistic consistency throughout.

The general structure of MCNP is as follows:

Initiation (IMCN):
* Read input file (INP) to get dimensions (PASS1);
» Set up variable dimensions or dynamically allocated storage (SETDAS);
* Re-read input file (INP) to load input (RDPROB);
* Process source (ISOURC);
* Process tallies (ITALLY);
» Process materials specifications (STUFF) including masses without loadingthe data files;
» Calculate cell volumes and surface areas (VOLUME).
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Interactive Geometry Plot (PLOT).

Cross Section Processing (XACT):

* Load libraries (GETXST);

» Eliminate excess neutron data outside problem energy range (EXPUNG);

» Doppler broaden elastic and total cross sections to the proper temperature if the problem
temperature is higher than the library temperature (BROADN);

* Process multigroup libraries (MGXSPT);

» Process electron libraries (XSGEN) including calculation of range tables, straggling tables,
scattering angle distributions, and bremsstrahlung.

MCRUN sets up multitasking and multiprocessing, runs histories (by calling TRNSPT, which
calls HSTORY), and returns to OUTPUT to print, write RUNTPE dumps, or process another
criticality (KCODE) cycle.

Under MCRUN, MCNP runs neutron, photon, or electron histories (HSTORY), calling
ELECTR for electron tracks:

» Start a source patrticle (STARTP);

» Find the distance to the next boundary (TRACK), cross the surface (SURFAC) and enter
the next cell (NEWCEL);

» Find the total neutron cross section (ACETOT) and process neutron collisions (COLIDN)
producing photons as appropriate (ACEGAM);

» Find the total photon cross section (PHOTOT) and process photon collisions (COLIDP)
producing electrons as appropriate (EMAKER);

» Use the optional thickarget bremsstrahlung approximation if no electron transport
(TTBR);

» Follow electron tracks (ELECTR);

» Process optional multigroup collisions (MGCOLN, MGCOLP, MGACOL);

* Process detector tallies (TALLYD) or DXTRAN;

» Process surface, cell, and pulse height tallies (TALLY).

Periodically write output file, restart dumps, update to next criticality (KCODE) cycle,
rendezvous for multitasking and updating detector and DXTRAN Russian roulette criteria, etc.
(OUTPUT):

» Go to the next criticality cycle (KCALC);

* Print output file summary tables (SUMARY, ACTION);

* Print tallies (TALLYP);

» Generate weight windows (OUTWWG).

Plot tallies, cross sections, and other data (MCPLOT).

GKS graphics simulation routines.

PVM distributed processor multiprocessing routines.

Random number generator and control (RANDOM).
Mathematics, character manipulation, and other slave routines.
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C. History Flow

The basic flow of a particle history for a coupled neutron/photon/electron problem is handled in
subroutine HSTORY. HSTORY is called from TRNSPT after the random number sequence is
set up and the number of the history, NPS, is incremented. The flow of HSTORY is then as
follows.

First, STARTP is called. The flag IPT is set for the type of particle being run: 1 for a neutron, 2
for a photon, and 3 for an electron. Some arrays and variables (such as NBNK, the number of
particles in the bank) are initialized to zero. The starting random number is saved (RANB,
RANS, RNRTCO0), and the branch of the history, NODE, is set to 1.

Next, the appropriate source routine is called. Source options are the standard fixed sources
(SOURCB), the surface source (SURSRC), the KCODE criticality source (SOURCK), or a user-
provided source (SOURCE). All of the parameters describing the particle are set in these source
routines, including position, direction of flight, energy, weight, time, and starting cell (and
possibly surface), by sampling the various distributions described on the source input control
cards. Several checks are made at this time to verify that the particle is in the correct cell or on
the correct surface, and directed toward the correct cell; then control is returned to STARTP.

Next in STARTP, the initial parameters of the first fifty particle histories are printed. Then some
of the summary information is incremented (see Appendix E for an explanation of these arrays).
Energy, time, and weight are checked against cutoffs. A number of error checks are made.
TALLYD is called to score any detector contributions, and then DXTRAN is called (if used in
the problem) to create particles on the spheres. The patrticles are saved with BANKIT for later
tracking. TALPH is called to start the bookkeeping for the pulse height cell tally energy balance.
The weight window game is played, with any additional particles from splitting put into the bank
and any losses to Russian roulette terminated. Control is returned to HSTORY.

Back in HSTORY, the actual particle transport is started. For an electron source, ELECTR is
called and electrons are run separately. For a neutron or photon source, TRACK is called to
calculate the intersection of the particle trajectory with each bounding surface of the cell. The
minimum positive distance DLS to the cell boundary indicates the next surface JSU the patrticle
is heading toward. The distance to the nearest DXTRAN sphere DXL is calculated, as is the
distance to time cutoff DTC, and energy boundary for multigroup charged particles DEB. The
cross sections for cell ICL are calculated using a binary table lookup in ACETOT for neutrons
and in PHOTOT for photons. The total cross section is modified in EXTRAN by the exponential
transformation if necessary. The distance PMF to the next collision is determined (if a forced
collision is required, FORCOL is called and the uncollided part is banked). The track length D
of the particle in the cell is found as the minimum of the distance PMF to collision, the distance
DLS to the surface JSU, the distance DXL to a DXTRAN sphere, the distance DTC to time
cutoff, or the distance DEB to energy boundary. TALLY then is called to increment any track
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length cell tallies. Some summary information is incremented. The particle’s parameters (time,
position, and energy) are then updated. If the particle's distance DXL to a DXTRAN sphere (of
the same type as the current particle) is equal to the minimum track length D, the patrticle is
terminated because particles reaching the DXTRAN sphere are already accounted for by the
DXTRAN particles from each collision. If the particle exceeds the time cutoff, the track is
terminated. If the particle was detected leaving a DXTRAN sphere, the DXTRAN flag IDX is
setto zero and the weight cutoff game is played. The particle is either terminated to weight cutoff
or survives with an increased weight. Weight adjustments then are made for the exponential
transformation.

If the minimum track length D is equal to the distance-to-surface crossing DLS, the particle is
transported distance D to surface JSU and SURFAC is called to cross the surface and do any
surface tallies (by calling TALLY) and to process the particle across the surface into the next cell
by calling NEWCEL. It is in SURFAC that reflecting surfaces, periodic boundaries, geometry
splitting, Russian roulette from importance sampling, and loss to escape are treated. For
splitting, one bank entry of NPA particle tracks is made in BANKIT for an (NPA+1)-for-1 split.
The bank is the IBNK array, and entries or retrievals are made with the GPBLCM and JPBLCM
arrays (the bank operates strictly on a last-in, first-out basis). The history is continued by going
back to HSTORY and calling TRACK.

If the distance to collision PMF is less than the distance to surface DLS, or if a multigroup
charged particle reaches the distance to energy boundary DEB, the particle undergoes a
collision. Everything about the collision is determined in COLIDN for neutrons and COLIDP
for photons. COLIDN determines which nuclide is involved in the collision, samples the target
velocity of the collision nuclide by calling TGTVEL for the free gas thermal treatment,
generates and banks any photons (ACEGAM), handles analog capture or capture by weight
reduction, plays the weight cutoff game, handiesp) thermal collisions (SABCOL) and
elastic or inelastic scattering (ACECOL). For criticality problems, COLIDK is called to store
fission sites for subsequent generations. Any additional tracks generated in the collision are put
in the bank. ACECAS and ACECOS determine the energies and directions of particles exiting
the collision. Multigroup and multigroup/adjoint collisions are treated separately in MGCOLN
and MGACOL that are called from COLIDN. The collision process and thermal treatments are
described in more detail later in this chapter (see page 2—28).

COLIDP for photons is similar to COLIDN, and it covers the simple or the detailed physics
treatments. The simple physics treatment is better for free electrons; the detailed treatment is the
default and includes form factors for electron binding effects, coherent (Thomson) scatter, and
fluorescence from photoelectric capture (see page 2-55). COLIDP samples for the collision
nuclide, treats photoelectric absorption, or capture (with fluorescence in the detailed physics
treatment), incoherent (Compton) scatter (with form factors in the detailed physics treatment to
account for electron binding), coherent (Thomson) scatter for the detailed physics treatment only
(again with form factors), and pair production. Electrons are generated (EMAKER) for
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incoherent scatter, pair production, and photoelectric absorption. These electrons may be
assumed to deposit all their energy instantly if IDES=1 on the PHYS:P card, or they may
produce electrons with the thiglarget bremsstrahlung approximation (default for MODE P
problems, IDES=0 on the PHYS:P card), or they may undergo full electron transport (default for
MODE P E problems, IDES=0 on the PHYS:P card.) Multigroup or multigroup/adjoint photons
are treated separately in MGCOLP or MGACOL.

After the surface crossing or collision is processed, control returns to HSTORY and transport
continues by calling TRACK, where the distance to cell boundary is calculated. Or if the particle
involved in the collision was killed by capture or variance reduction, the bank is checked for any
remaining progeny, and if none exists, the history is terminated. Appropriate summary
information is incremented, the tallies of this particular history are added to the total tally data
by TALSHF, and a return is made to TRNSPT.

In TRNSPT, checks are made to see if output is required or if the job should be terminated
because enough histories have been run or too little time remains to continue. For continuation,
HSTORY is called again. Otherwise a return is made to MCRUN. MCRUN calls OUTPUT,
which calls SUMARY to print the summary information. Then SUMARY calls TALLYP to print

the tally data. Appendix E defines all of the MCNP variables that are in COMMON as well as
detailed descriptions of some important arrays.

. GEOMETRY

The basic MCNP geometry concepts, discussed in Chapter 1, include the sense of a cell, the
intersection and union operators, and surface specification. Covered in this section are the
complement operator; the repeated structure capability; an explanation of two surfaces, the cone
and the torus; and a description of ambiguity, reflecting, white, and periodic boundary surfaces.

A.  Complement Operator

This operator provides no new capability over the intersection and union operators; it is just a
shorthand cell-specifying method that implicitly uses the intersection and union operators.

The symbol # is the complement operator and can be thought of as standioifiorThere
are two basic uses of the operator:

#n means that the description of the current cell is the complement of the descriptionrof cell
#(...) means complement the portion of the cell description in the parentheses (usually just a
list of surfaces describing another cell).

In the first of the two above forms, MCNP performs five operations: (1) the symbol # is removed,
(2) parentheses are placed aroan@) any intersections in become unions, (4) any unions in
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n are replaced by back-to-back parentheses, “)(“, which is an intersection, and (5) the senses of
the surfaces definingare reversed.

A simple example is a cube. We define a twell geometry with six surfaces, where cell 1 is the
cube and cell 2 is the outside world:

1 0-12-34-56
2 0 1-2: 3—-4: 5-6
Note that cell 2 is everything in the universe thatasincell 1, or
2 0#1
The form #() is not allowed; it is functionally available as the equivalertrof

CAUTION : Using the complement operator can destroy some of the necessary conditions for
some cell volume and surface area calculations by MCNP. See page 4-15 for an example.

The complement operator can be easily abused if it is used indiscriminately. A simple example
can best illustrate the problems. Fig. 2-1 consists of two concentric spheres inside a box. Cell 4
can be described using the complement operator as

4 0#3#2+#1
Although cells 1 and 2 do not touch cell 4, to omit them would be incorrect. If they were omitted,
the description of cell 4 would legerything in the universe that is not in cell 3. Since cells 1
and 2 are not part of cell 3, they would be included in cell 4. Even though surfaces 1 and 2 do
not physically bound cell 4, using the complement operator as in this example causes MCNP to
think that all surfaces involved with the complement do bound the cell. Even though this
specification is correct and required by MCNP, the disadvantage is that when a particle enters
cell 4 or has a collision in cell 4, MCNP must calculate the intersection of the particle's trajectory
with all real bounding surfaces of cell 4 plus any extraneous ones brought in by the complement
operator. This intersection calculation is very expensive and can add significantly to the required
computer time.

®|®
@

Figure 2-1.
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A better description of cell 4 would be to complement the description of cell 3 (omitting surface
2) by reversing the senses and interchanging union and intersection operators as illustrated in the
cell cards that describe the simple cube in the preceding paragraphs.

B. Repeated Structure Geometry

The repeated structure geometry feature is explained in detail starting on page 3-25. The
capabilities are only introduced here. Examples are shown in Chapter 4. The cards associated
with the repeated structure feature are U (universe), FILL, TRCL, and LAT (lattice) and cell
cards with LIKE m BUT.

The repeated structure feature makes it possible to describe only once the cells and surfaces of
any structure that appears more than once in a geometry. This unit then can be replicated at other
xyz locations by using the “LIKE m BUT” construct on a cell card. The user specifies that a cell

is filled with something called a universe. The U card identifies the universe, if any, to which a
cell belongs. The FILL card specifies with which universe a cell is to be filled. A universe is
either a lattice or an arbitrary collection of cells. The two types of lattice shapes, hexagonal
prisms and hexahedra, need not be rectangular nor regular, but they must fill space exactly.
Several concepts and cards combine in order to use this capability.

C. Surfaces

1. Explanation of Cone and Torus

Two surfaces, the cone and torus, require more explanation. The quadratic equation for a cone
describes a cone of two sheets (just like a hyperboloid of two she®ts3heet is a cone of

positive slope, and the other has a negative slope. A cell whose description contains a two
sheeted cone may require an ambiguity surface to distinguish between the two sheets. MCNP
provides the option to select either of the two sheets; this option frequently simplifies geometry
setups and eliminates any ambiguity. Hieor the-1 entry on the cone surface card causes the
one sheet cone treatment to be used. If the sign of the entry is positive, the specified sheet is the
one that extends to infinity in the positive direction of the coordinate axis to which the cone axis

is parallel. The converse is true for a negative entry. This feature is available only for cones
whose axes are parallel to the coordinate axes of the problem.

The treatment of fourth degree surfaces in Monte Carlo calculations has always been difficult
because of the resulting fourth order polynomial (“quartic”) equations. These equations must be
solved to find the intersection of a particle’s line of flight with a toroidal surface. In MCNP these
eguations must also be solved to find the intersection of surfaces in order to compute the volumes
and surface areas of geometric regions of a given problem. In either case, the quartic equation,
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x4+Bx3+Cx2+Dx+E =0

is difficult to solve on a computer because of roundoff errors. For many years the MCNP toroidal
treatment required 30 decimal digits (CDC double-precision) accuracy to solve quartic
equations. Even then there were roundoff errors that had to be corrected by Newton-Raphson
iterations. Schemes using a single-precision quartic formula solver followed by a Newton-
Raphson iteration were inadequate because if the initial guess of roots supplied to the Newton-
Raphson iteration is too inaccurate, the iteration will often diverge when the roots are close
together.

The single-precision quartic algorithm in MCNP basically follows the quartic solution of
Cashwell and Everett When roots of the quartic equation are well separated, a modified
Newton-Raphson iteration quickly achieves convergence. But the key to this method is that if
the roots are double roots or very close together, they are simply thrown out because a double
root corresponds to a particle’s trajectory being tangent to a toroidal surface, and itis a very good
approximation to assume that the particle then has no contact with the toroidal surface. In
extraordinarily rare cases where this is not a good assumption, the particle would become “lost.”
Additional refinements to the quartic solver include a carefully selected finite size of zero, the
use of a cubic rather than a quartic equation solver whenever a particle is transported from the
surface of a torus, and a gross quartic coefficient check to ascertain the existence of any real
positive roots. As a result, the single-precision quartic solver is substantially faster than double-
precision schemes, portable, and also somewhat more accurate.

In MCNP, elliptical tori symmetric about any axis parallel to a coordinate axis may be specified.
The volume and surface area of various tallying segments of a torus usually will be calculated
automatically.

2. Ambiquity Surfaces

The description of the geometry of a cell must eliminate any ambiguities as to which region of
space is included in the cell. That is, a particle entering a cell should be able to determine
uniquely which cell it is in from the senses of the bounding surfaces. This is not possible ina a
geometry such as shown in Fig. 2-2 unlessiarbiguity surfaces specified. Suppose the figure

is rotationally symmetric about the-gxis.

A particle entering cell 2 from the inner spherical region might think it was entering cell 1
because a test of the senses of its coordinates would satisfy the description of cell 1 as well as
that of cell 2. In such cases, an ambiguity surface is introduced sacthagplane y = 0. An
ambiguity surface need not be a bounding surface of a cell, but it may be and frequently is. It
can also be the bounding surface of some cell other than the one in question. However, the
surface must be listed among those in the problem and must not be a reflecting surface (see page
2-14). The description of cells 1 and 2 in Fig. 2-2 is augmented by listing for each its sense
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Figure 2-2.

relative to surfaca as well as that of each of its other bounding surfaces. A patrticle in cell 1
cannot have the same sense relative to suafasedoes a particle in cell 2. More than one
ambiguity surface may be required to define a particular cell.

A second example may help to clarify the significance of ambiguity surfaces. We would like to
describe the geometry of Fig. 2-3a. Without the use of an ambiguity surface, the result will be
Fig. 2-3b. Surfaces 1 and 3 are spheres about the origin, and surface 2 is a cylinder around the
y—axis. Cell 1 is both the center and outside world of the geometry connected by the region
interior to surface 2.

@) @)
@) @)
(a)

(b)

Figure 2-3.

At first glance it may appear that cell 1 can easily be specified by2 : 3 whereas cell 2 is
simply #1. This results in Figure 2.3b, in which cell 1 is everything in the universe interior to
surface 1 plus everything in the universe interior to surface 2 (remember the cylinder goes to plus
and minus infinity) plus everything in the universe exterior to surface 3.

An ambiguity surface (a plane at y=0) will solve the problem. Everything in the universe to the
right of the ambiguity surface (call it surfaceidfersectedvith everything in the universe
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interior to the cylinder is a cylindrical region that goes to plus infinity but terminates at y=0.
Therefore-1 : (4-2) : 3 defines cell 1 as desired in Figure 2.3a. The parentheses in this last
expression are not required because intersections are done before unions. Another expression for
cell 2 rather than #1 is-13 #(4-2).

For the user, ambiguity surfaces are specified the same way as any other surface—simply list the
signed surface number as an entry on the cell card. For MCNP, if a particular ambiguity surface
appears on cell cards with only one sense, it is treated as a true ambiguity surface. Otherwise, it
still functions as an ambiguity surface but the TRACK subroutine will try to find intersections
with it, thereby using a little more computer time.

3. Reflecting Surfaces

A surface can be designated a reflecting surface by preceding its number on the surface card with
an asterisk. Any particle hitting a reflecting surface is specularly (mirror) reflected. Reflecting
planes are valuable because they can simplify a geometry setup (and also tracking) in a problem.
They can, however, make it difficult (or even impossible) to get the correct answer. The user is
cautioned to check the source weight and tallies to ensure that the desired result is achieved. Any
tally in a problem with reflecting planes should have the same expected result as the tally in the
same problem without reflecting planes. Detectors or DXTRAN used with reflecting surfaces
give WRONG answers (see page 2-92).

The following example illustrates the above points and hopefully makes you very cautious in the
use of reflecting surfaces; they should never be used in any situation without a lot of thought.

Consider a cube of carbon 10 cm on a side sitting on top of a 5-MeV neutron source distributed
uniformly in volume. The source cell is a 1-cm-thick void completely covering the bottom of the
carbon cube and no more. The average neutron flux across any one of the sides (but not top or
bottom) is calculated to be 0.1580,5%) per cnf per starting neutron from an MCNP F2 tally,

and the flux at a point at the center of the same side is 1.55e-03 (#¢fb) from an MCNP F5

tally.

The cube can be modeled by half a cube and areflecting surface. All dimensions remain the same
except the distance from the tally surface to the opposite surface (which becomes the reflecting
surface) is 5 cm. The source cell is cut in half also. Without any source normalization, the flux
across the surface is now 0.302X5 %), which is twice the flux in the nonreflecting geometry.
The detector flux is 2.58803 (1 %), which idessthan twice the point detector flux in the
nonreflecting problem.

The problem is that for the surface tally to be correct, the starting weight of the source particles

has to be normalized; it should be half the weight of the nonreflected source particles. The
detector results will always be wrong (and lower) for the reason discussed on page 2-92.
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In this particular example, the normalization factor for the starting weight of source particles
should be 0.5 because the source volume is half of the original volume. Without the
normalization, the full weight of source particles is started in only half the volume. These
normalization factors are problem dependent and should be derived very carefully.

Another way to view this problem is that the tally surface has doubled because of the reflecting
surface; two scores are being made across the tally surface when one is made across each of two
opposite surfaces in the nonreflecting problem. The detector has doublexttag that the
contributions to it from beyond the reflecting surface are not being made, see page 2-92.

4. White Boundaries

A surface can be designated a white boundary surface by preceding its number on the surface
card with a plus. A particle hitting a white boundary is reflected with a cosine distribution,

p(K) = W, relative to the surface normal; thatyss .z, wheref is a random number. White
boundary surfaces are useful for comparing MCNP results with other codes that have white
boundary conditions. They also can be used to approximate a boundary with an infinite scatterer.
They make absolutely no sense in problems with next-event estimators such as detectors or
DXTRAN (see page 2-92) and should always be used with caution.

5. Periodic Boundaries

Periodic boundary conditions can be applied to pairs of planes to simulate an infinite lattice.
Although the same effect can be achieved with an infinite lattice, the periodic boundary is easier
to use, simplifies comparison with other codes having periodic boundaries, and can save
considerable computation time. There is approximately a 55% run-time penalty associated with
repeated structures and lattices that can be avoided with periodic boundaries. However,
collisions and other aspects of the Monte Carlo random walk usually dominate running time, so
the savings realized by using periodic boundaries are usually much smaller. A simple periodic
boundary problem is illustrated in Figure 2.3c.

\\ 3
Figure 2-3(c).
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It consists of a square reactor lattice infinite in the z direction and 10 cm on a side in the x and
y directions with an off-center 1 ecrmadius cylindrical fuel pin. The MCNP surface cards are:

1 -2 px -5

2 -1 px 5

3 -4 py -5

4 -3 py 5

5 clz -2 4 1

The negative entries before the surface mnemonics specify periodic boundaries. Card one says
that surface 1 is periodic with surface 2 and is a px plane. Card two says that surface 2 is periodic
with surface 1 and is a px plane. Card three says that surface 3 is periodic with surface 4 and is
a py plane. Card four says that surface 4 is periodic with surface 3 and is a py plane. Card five
says that surface 5 is an infinite cylinder parallel to thaxas. A particle leaving the lattice out

the left side (surface 1) re-enters on the right side (surface 2). If the surfaces were reflecting, the
re-entering particle would miss the cylinder, shown by the dotted line. In a fully specified lattice
and in the periodic geometry, the re-entering particle will hit the cylinder as it should.

Much more complicated examples are possible, particularly hexagonal prism lattices. In all
cases, MCNP checks that the periodic surface pair matches properly and performs all the
necessary surface rotations and translations to put the particle in the proper place on the
corresponding periodic plane.

The following limitations apply:

» Periodic boundaries cannot be used with next event estimators such as detectors or
DXTRAN (see page 2-92);

 All periodic surfaces must be planes;

» Periodic planes cannot also have a surface transformation;

» The periodic cells may be infinite or bounded by planes on the top or bottom that must be
reflecting or white boundaries but not periodic;

» Periodic planes can only bound other periodic planes or top and bottom planes;

» A single zero-importance cell must be on one side of each periodic plane;

 All periodic planes must have a common rotational vector normal to the geometry top and
bottom.

[ll. CROSS SECTIONS

The MCNP code package is incomplete without the associated nuclear data tables. The kinds of
tables available and their general features are outlined in this section. The manner in which
information contained on nuclear data tables is used in MCNP is described in Sec. IV of this
chapter.
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There are two broad objectives in preparing nuclear data tables for MCNP. First, it is our
responsibility to ensure that the data available to MCNP reproduce the original evaluated data as
much as is practical. Second, new data should be brought into the MCNP package in a timely
fashion, thereby giving users access to the most recent evaluations.

Eight classes of nuclear data tables exist for MCNP. They are: (1) continuous-energy neutron
interaction data, (2) discrete reaction neutron interaction data, (3) photon interaction data, (4)
neutron dosimetry cross sections, (5) neus@np) thermal data (6) multigroup neutron,

coupled neutron/photon, and charged particles masquerading as neutrons, (7) multigroup
photon, and (8) electron interaction data. It is understood that photon and electron data are
atomic rather than nuclear. In Mode N problems, one continuous-energy or discrete-reaction
neutron interaction table is required for each isotope or element in the problem. Likewise, one
photon interaction table is required for each element in a Mode P problem, and one electron
interaction table is required for each element in a Mode E problem. Dosimetry and thermal data
are optional. Cross sections from dosimetry tables can be used as response functions with the
FM card to determine reaction rates. Ther8{al) tables are appropriate if the neutrons are
transported at sufficiently low energies where molecular binding effects are important.

MCNP can read from data tables in two formats. Data tables are transmitted between computer
installations in 80-column card-image BCD format (Type-1 format). An auxiliary processing
code, MAKXSF, converts the BCD files to standard unformatted binary files (Type-2 format),
allowing more economical access during execution of MCNP. The data contained on a table for
a specific ZAID (10-character name for a nuclear data table) are independent of the format of
the table.

The format of nuclear data tables is given in considerable detail in Appendix F. This appendix
may be useful for users making extensive modifications to MCNP involving cross sections or for
users debugging MCNP at a fairly high level.

The available nuclear data tables are listed in Appendix G. Each nuclear data table is identified
by a ZAID. The general form of a ZAID is ZZZAAA.nnX, where ZZZ is the atomic number,
AAA is the atomic weight, nn is the evaluation identifier, and X indicates the class of data. For
elemental evaluations AAA=000. Nuclear data tables are selected by the user with the Mn and
MTn cards.

In the remainder of this section we describe several characteristics of each class of data such as
evaluated sources, processing tools, and any differences between data on the original evaluation
and on the MCNP data tables. The means of accessing each class of data through MCNP input
will be detailed and some hints will be provided on how to select the appropriate data tables.
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A. Neutron Interaction Data: Continuous-Energy and Discrete-Reaction

In neutron problems, one neutron interaction table is required for each isotope or element in the
problem. The form of the ZAIDs is ZZZAAA.nnC for a continuous-energy table and
ZZZAAA.nnD for a discrete reaction table. The neutron interaction tables available to MCNP
are listed in Table G.2 of Appendix G. (It should be noted that although all nuclear data tables
in Appendix G are available to users at Los Alamos, users at other installations will generally
have only a subset of the tables available.)

For most materials there are many cross-section sets available (represented by different values
of nnin the ZAIDs) because of multiple sources of evaluated data and different parameters used
in processing the data. An evaluated nuclear data set is produced by analyzing experimentally
measured cross sections and combining those data with the predictions of nuclear model
calculations in an attempt to extract the most accurate cross-section information. Preparing
evaluated cross-section sets has become a discipline in itself and has developed since the early
1960s. People in most of the national laboratories and several of the commercial reactor design
firms are involved in such work. American evaluators joined forces in the mid-1960s to create
the national ENDF systeAY.The ENDF contributors collaborate through the Cross Section
Evaluation Working Group (CSEWG).

In recent years the primary evaluated source of neutron interaction data for MCNP has been the
ENDF/B system. Recently evaluated neutron interaction data tables are also extracted from two
other sources: Lawrence Livermore National Laboratory's Evaluated Nuclear Data Library
(ENDL),?* and supplemental evaluations performed in the Nuclear Theory and Applications
Group at Los Alamo$>:2?’Older evaluations come from previous versions of ENDF/B and
ENDL, the Los Alamos Master Data Fi2and the Atomic Weapons Research Establishment

in Great Britain.

MCNP does not access evaluated data directly; these data must first be processed into ACE
format. The very complex processing codes used for this purpose include?Rft®¥valuated
data in ENDF/B format and MCPOIN%for ENDL data.

Data on the MCNP neutron interaction tables include cross sections and much more. Cross
sections for all reactions given in the evaluated data are specified. For a particular table, the cross
sections for each reaction are given on one energy grid that is sufficiently dense that linear-linear
interpolation between points reproduces the evaluated cross sections within a specified tolerance
that is generally 1% or less. Depending primarily on the number of resolved resonances for each
isotope, the resulting energy grid may contain as fel®288 points (for example, H-1) or as

many ag 22,500 points (for example, the ENDFBversion of AU-197). Other information,
including the total absorption cross section, the total photon production cross section, and the
average heating number (for energy deposition calculations), is also tabulated on the same
energy grid.
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Angular distributions of scattered neutrons are included in the neutron interaction tables for all
reactions emitting neutrons. The distributions are given in the center-of-mass system for elastic
scattering, discrete-level inelastic scattering, and for some ENDF/B-VI scattering laws, and are
given in the laboratory system for all other inelastic reactions. Angular distributions are given
on a reaction-dependent grid of incident neutron energies. These tables are sampled to conserve
energy for many collisions but will not necessarily conserve energy for a single collision; that s,
energy is conserved on average.

The sampled angle of scattering uniquely determines the secondary energy for elastic scattering
and discrete-level inelastic scattering. For other inelastic reactions, energy distributions of the
scattered neutrons are provided in the neutron interaction tables. As with angular distributions,
the energy distributions are given on a reaction-dependent grid of incident neutron energies.

When evaluations contain data about secondary photon production, that information appears in

the MCNP neutron interaction tables. Many processed data sets contain photon production cross
sections, photon angular distributions, and photon energy distributions for each neutron reaction

that produces secondary photons. The information is given in a manner similar to that described

in the last few paragraphs for neutron cross sections and secondary neutron distributions.

Other miscellaneous information on the neutron interaction tables includes the atomic weight
ratio of the target nucleus, the Q-values of each reaction, and rwbar, , data (the average number
of neutrons per fission) for fissionable isotopes. In many cases both prompt and total  are given.
Prompto is the default for all but KCODE criticality problems and total is the default for
KCODE criticality problems. The TOTNU input card can be used to change the default.

Approximations must be made when processing an evaluated data set into ACE format. As
mentioned above, cross sections are reproduced only within a certain tolerance, geneyally

to decrease it further would result in excessively large data tables. For many nuclides, a
“thinned” neutron interaction table is available with a coarse tolerance, > 1%, that greatly
reduces the library size. Smaller library sizes also can be obtained by using discrete reaction
tables or higher temperature data. Evaluated angular distributions for secondary neutrons and
photons are approximated on MCNP data tables by 32 equally probable cosine bins. This
approximation is clearly necessary when contrasted to the alternative that might involve
sampling from a 20th-order Legendre polynomial distribution. Secondary neutron energy
distributions given in tabular form by evaluators are sometimes approximated on MCNP data
tables by 32 equally probable energy bins. Older cross-section tables include a 30x20 matrix
approximation of the secondary photon energy spectra (described on page 2—34). On the whole,
the approximations are small, and MCNP neutron interaction data tables are extremely faithful
representations of evaluated data.

Discrete-reaction tables are identical to continuous-energy tables except that in the discrete
reaction tables all cross sections have been averaged into 262 groups. The averaging is done with
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a flat weighting function. This is not a multigroup representation; the cross sections are simply
given as histograms rather than as continuous curves. The remaining data (angular distributions,
energy distributionsy , etc.) are identical in discrete-reaction and continuous-energy tables.
Discrete-reaction tables are provided primarily as a method of shrinking the required data
storage to enhance the ability to run MCNP on small machines or in a time-sharing environment.
The tables may also be useful for preliminary scoping studies or for isotopes that exist only in
trace quantities in a problem. They are not, however, recommended as a substitute for the
continuous-energy tables when performing final calculations, particularly for problems
involving transport through the resonance region.

The matter of how to select the appropriate neutron interaction tables for your calculation is now
discussed. Multiple tables for the same isotope are differentiated by the “nn” portion of the
ZAID. The easiest choice for the user, although by no means the recommended one, is not to
enter the nn at all. MCNP will select the first match found in the directory file XSDIR. The
default nnX can be changed for all isotopes of a material by the NLIB keyword entry on the Mm
card. The default will be overridden by fully specifying the ZAID. Default continuous-energy
neutron interaction tables are accessed by entering ZZZAAA for the ZAID\null. Including a
DRXS card in the input file will force MCNP to choose the default discrete reaction tables.

Careful users will want to think about what neutron interaction tables to choose. There is,
unfortunately, no strict formula for choosing the tables. The following guidelines and
observations are the best that can be offered:

1. Users should be aware of the differences between the “.50C” series of data tables and
the “.51C” series. Both are derived from ENDF/B-V. The “.50C” series is the most
faithful reproduction of the evaluated data. The “.51C” series, also called the
“thinned” series, has been processed with a less rigid tolerance than the “.50C” series.
As with discrete reaction data tables, although by no means to the same extent, users
should be careful when using the “thinned” data for transport through the resonance
region.

2. Consider differences in evaluators' philosophies. The Physical Data Group at
Livermore is justly proud of its extensive cross-section efforts; their evaluations
manifest a philosophy of reproducing the data with the fewest number of points.
Livermore evaluations are available mainly in the “.40C” series. We at Los Alamos
are particularly proud of the evaluation work being carried out in the Nuclear Theory
and Applications Group T-2; generally, these evaluations are the most complex
because they are the most thorough. Recent evaluations from Los Alamos are
available in the “.55C” series.

3. Beaware of the neutron energy spectrum in your problem. For high-energy problems,
the “thinned” and discrete reaction data are probably not bad approximations.
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Conversely, itis essential to use the most detailed continuous-energy set available for
problems influenced strongly by transport through the resonance region.

4. Check the temperature at which various data tables have been processed. Do not use
a set that is Doppler broadened to 12,000,000 K for a room temperature calculation.

5. Consider checking the sensitivity of the results to various sets of nuclear data. Try, for
example, a calculation with ENDF/B-V cross sections, and then another with ENDL
cross sections. If the results of a problem are extremely sensitive to the choice of
nuclear data, it is advisable to find out why.

6. For a coupled neutron/photon problem, be careful that the tables you choose have
photon production data available. If possible, use the more-recent sets that have been
processed into expanded photon production format.

7. Ingeneral, use the best data you can afford. It is understood that the latest evaluations
tend to be more complex and therefore require more memory and longer execution
times. If you are limited by available memory, try to use smaller data tables such as
thinned or discrete-reaction for the minor isotopes in the calculation. Discrete reaction
data tables might be used for a parameter study, followed by a calculation with the full
continuous-energy data tables for confirmation.

To select the neutron interaction data tables, the nn portion of the ZAIDs must be entered on the
Mn card(s). For a continuous-energy set, ZZZAAA.nn is equivalent to ZZZAAA.nnC. To use a
discrete-reaction table (unless there is a DRXS card in the input) the full ZAID, ZZZAAA.NnD,
must be entered.

If only the integer portion of the ZAID is entered (ZZZAAA), MCNP will choose the eross
section table that it will use. Based on other cards (i.e., MODE, MGOPT, DRXS), MCNP knows
which class of data is required. The code then “reads” the cross-section directory file (XSDIR)
and selects the first table it finds that meets the ZZZAAA and class criteria. Thus, default cross
sections are based entirely on the ordering of the entries in the XSDIR file you are using at your
installation.

In conclusion, the additional time necessary to choose appropriate neutron interaction data tables

rather than simply to accept the defaults often will be rewarded by increased understanding of
your calculation.

B. Photon Interaction Data

Photon interaction cross sections are required for all photon problems. The form of the ZAID is
ZZZ7Z000.nnP. There are two photon interaction data libraries: nn = 01 and nn = 02.

For the ZAID=2ZZ000.01P library, the photon interaction tables4e 84, 85, 87, 88, 89, 91,
and 93 are based on the compilation of Storm and I&t&eim 1 keV to 15 MeV. For all other
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elements from Z = 1 through Z = 94 the photon interaction tables are based on evaluated data
from ENDPF? from 1 keV to 100 MeV. Fluorescence data are taken from work by Everett and
Cashwel®® Energy grids are tailored specifically for each element and contain approximately
40 to 60 points.

The ZAID = ZZZ000.02P library is a superset of the ZAID = ZZZ000.01P library with pair
production thresholds added for the Storm-Israel data. Data above 15 MeV for the Storm-Israel
data and above 100 MeV for the ENDF data come from adaptation of the Livermore Evaluated
Photon Data Library (EPDEf and go up to 100 GeV. However, it usually is impractical to run
above 1 GeV with MCNP because electron data only go to 1 GeV. The energy grid for the ZAID
= ZZZ000.02P library contains approximately 100 points.

For each nuclide the photon interaction libraries contain an energy grid (logarithms of energies),
including the photoelectric edges and the pair production threshold. These energies are tailored
specifically for each element. The logarithmic energies are followed by tables of incoherent and
coherent form factors that are tabulated as a function of momentum transfer. The next tables are
logarithms of the incoherent scattering, coherent scattering, photoelectric, and pair production
cross sections, followed by the photon heating numbers. The total cross section is not stored, but
rather summed from the other cross sections during transport.

The determination of directions and energies of scattered photons requires information different
from the sets of angular and energy distributions found on neutron interaction tables. Angular
distributions of secondary photons are isotropic for photoelectric effect, fluorescence, and pair
production, and come from sampling the well-known Thomson and Klein-Nishina formulas for
coherent and incoherent scattering. The energy of an incoherently scattered photon is calculated
from the sampled scattering angle. Values of the integrated coherent form factor are tabulated on
the photon interaction tables for use with next event estimators such as point detectors.

Very few approximations are made in the various processing codes used to transfer photon data
from ENDF into the format of MCNP photon interaction tables. Cross sections are reproduced
exactly as given. Form factors and scattering functions are reproduced as given; however, the
momentum transfer grid on which they are tabulated may be different from that of the original
evaluation. Heating numbers are calculated values, not given in evaluated sets, but inferred from
them. Fluorescence data are not provided in ENDF; therefore the data for MCNP are extracted
from a variety of sources as described in Ref. 31.

To select photon interaction data, specific ZAID identifiers can be used, such as

ZAID = ZZZ7000.02P, or selections from a library can be used by specifying PLIB=nnP on the
M card. The PLIB = specification on the M card is the preferred method because the ZAID
entries may already be used to specify neutron libraries and, unlike neutrons, it usually is
desirable to pick all photon data from the same library. A specification on the Mn card for a
neutron interaction table with ZAID = ZZZAAA.nnC or ZAID = ZZZAAA.nnD immediately
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causes a photon interaction table with ZAID = ZZZ000.nnP to be accessed as well, where nn is
the first photon data encountered for ZZZ000 on the XSDIR cross section directory file or nn
comes from PLIB = nn. The data table required for ZAID = ZZZAAA.nnP is identical to that
required for ZAID = ZZZ000.nnP; however, the atomic weight used in the calculation will likely
be different.

C. Electron Interaction Data

Electron interaction data tables are required both for problems in which electrons are actually
transported, and for photon problems in which the thick-target bremsstrahlung model is used.
Electron data tables are identified by ZAIDs of the form ZZZ000.nnE, and are selected by
default when the problem mode requires them. There are two electron interaction data libraries:
nn=03 and nn = 01.

The electron library contains data on an element-by-element basis for atomic numbers Z=1-94.
As is the case with photons, there is no distinction between isotopes for a given element. The
library data contain energies for tabulation, radiative stopping power parameters,
bremsstrahlung production cross sections, bremsstrahlung energy distributions, K-edge
energies, Auger electron production energies, parameters for the evaluation of the Goudsmit-
Saunderson theory for angular deflections based on the Riley cross section calculation, and Mott
correction factors to the Rutherford cross sections also used in the Goudsmit-Saunderson theory.
The el03 database also includes the atomic data of Carlson used in the density effect calculation.
Internally, calculated data are electron stopping powers and ranges, K x-ray production
probabilities, knock-on probabilities, bremsstrahlung angular distributions, and the Landau-
Blunck-Leisegang theory of energy-loss fluctuations. The el03 evaluation is derived from the
ITS3.0 code syster? Discussions of the theoretical basis for these data and references to the
relevant literature are presented in Section IV-E of this chapter.

The hierarchy rules for electron cross sections require that each material must use the same
electron library. If a specific ZAID is selected, such as ZZZ000.01E, that choice will override
any defaults. Alternatively, a default electron library for a given material can be chosen by
specifying ELIB = nnE on the M card. However, one can not specify different libraries, nn=01
and nn=03, by any means; overriding this with a fatal option will result in unreliable results. In
the absence of either of these specifications, MCNP will use the first electron data table listed in
the XSDIR cross section directory file for the relevant element.

D. Neutron Dosimetry Cross Sections

Dosimetry cross-section tables cannot be used for transport through material. These incomplete
cross-section sets provide energy-dependent neutron cross sections to MCNP for use as response
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functions with the FM tally feature. ZAIDs of dosimetry tables are of the form ZZZAAA.nnY.
Remember, dosimetry cross-section tables have no effect on the particle transport of a problem.

The available dosimetry cross sections are from three sources: ENMBBsimetry Tape 531,
ENDF/B-V Activation Tape 532, and ACT-an evaluated neutron activation cross-section
library from the Lawrence Livermore National Laboratory. Various codes have been used to
process evaluated dosimetry data into the format of MCNP dosimetry tables.

Data on dosimetry tables are simply energy-cross-section pairs for one or more reactions. The
energy grids for all reactions are independent of each other. Interpolation between adjacent
energy points can be specified as histogram, linear-linear, linear-log, log-linear, or log-log. With
the exception of the tolerance involved in any reconstruction of pointwise cross sections from
resonance parameters, evaluated dosimetry cross sections can be reproduced on the MCNP data
tables with no approximation.

ZAIDs for dosimetry tables must be entered on material cards that are referenced by FM cards,
not on Mm cards referenced by cell cards. The complete ZAID, ZZZAAA.nnY, must be given;
there are no defaults for dosimetry tables.

E. Neutron Thermal S¢,3) Tables

ThermalSa,) tables are not required, but they are absolutely essential to get correct answers
in problems involving neutron thermalization. Thermal tables have ZAIDs of the form
XXXXXX.nnT, where XXXXXX is a mnemonic character string. The data on these tables
encompass those required for a complete representation of thermal neutron scattering by
molecules and crystalline solids. The sourc&of,f) data is a special set of ENDF tap€&The
THERMR and ACER modules of the NJ&Ysystem have been used to process the evaluated
thermal data into a format appropriate for MCNP.

Data are for neutron energies generally less than 4 eV. Cross sections are tabulated on table-
dependent energy grids; inelastic scattering cross sections are always given and elastic scattering
cross sections are sometimes given. Correlated energy-angle distributions are provided for
inelastically scattered neutrons. A set of equally probable final energies is tabulated for each of
several initial energies. Further, a set of equally probable cosines or cosine bins is tabulated for
each combination of initial and final energies. Elastic scattering data can be derived from either
an incoherent or a coherent approximation. In the incoherent case, equally probable cosines or
cosine bins are tabulated for each of several incident neutron energies. In the coherent case,
scattering cosines are determined from a set of Bragg energies derived from the lattice
parameters. During processing, approximations to the evaluated data are made when
constructing equally probable energy and cosine distributions.
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ZAIDs for the thermal tables are entered on an MTn card that is associated with an existing Mn
card. The thermal table generally will provide data for one component of a material—for
example, hydrogen in light water. Thermal ZAIDs may be entered on the MTn card(s) as
XXXXXX, XXXXXX.nN, or XXXXXX.nnT.

F. Multigroup Tables

Multigroup cross section libraries are the only libraries allowed in multigroup/adjoint problems.
Neutron multigroup problems cannot be supplemented$(dtf3) thermal libraries; the thermal
effects must be included in the multigroup neutron library. Photon problems cannot be
supplemented with electron libraries; the electrons must be part of the multigroup photon library.
The form of the ZAID is ZZZAAA.nnM or ZZZAAA.nnG for photons only.

Although continuous-energy data are more accurate than multigroup data, the multigroup option
is useful for a number of important applications: (1) comparison of determing&pitransport

codes to Monte Carlo; (2) use of adjoint calculations in problems where the adjoint method is
more efficient; (3) generation of adjoint importance functions; (4) cross section sensitivity
studies; (5) solution of problems for which continuous-cross sections are unavailable; and (6)
charged particle transport using the Boltzmann-Fokker-Planck algorithm in which charged
particles masquerade as neutrons.

Multigroup cross sections are very problem dependent. Some multigroup libraries are available
from the Transport Methods Group at Los Alamos but must be used with caution. Users are
encouraged to generate or get their own multigroup libraries and then use the supplementary
code CRSREP to convert them to MCNP format. Reference 38 describes the conversion
procedure. This report also describes how to use both the multigroup and adjoint methods in
MCNP and presents several benchmark calculations demonstrating the validity and
effectiveness of the multigroup/adjoint method.

To generate cross-section tables for electron/photon transport problems that will use the
multigroup Boltzmann-Fokker-Planck algorithththe CEPX$° code developed by Sandia

National Laboratory and available from RSICC can be used. The CEPXS manuals describe the
algorithms and physics database upon which the code is based; the physics package is essentially
the same as ITS version 2.1. The keyword “MONTE-CARLO?” is needed in the CEPXS input

file to generate a cross-section library suitable for input into CRSRD; this undocumented feature
of the CEPXS code should be approached with caution.

IV. PHYSICS

The physics of neutron, photon, and electron interactions is the very essence of MCNP. This
section may be considered a software requirements document in that it describes the equations
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MCNP isintended to solve. All the sampling schemes essential to the random walk are presented
or referenced. But first, particle weight and particle tracks, two concepts that are important for
setting up the input and for understanding the output, are discussed in the following sections.

A. Particle Weight

If MCNP were used only to simulate exactly physical transport, then each MCNP particle would
represent one physical particle and would have unit weight. However, for computational
efficiency, MCNP allows many techniques that do not exactly simulate physical transport. For
instance, each MCNP particle might represent a number w of particles emitted from a source.
This number w is the initial weight of the MCNP particle. The w physical particles all would
have different random walks, but the one MCNP particle representing these w physical particles
will only have one random walk. Clearly this is not an exact simulation; however, the true
number of physical particles is preserved in MCNP in the sense of statistical averages and
therefore in the limit of large particle numbers (of course including particle production or loss if
they occur). Each MCNP particle result is multiplied by the weight so that the full results of the
w physical particles represented by each MCNP particle are exhibited in the final results (tallies).
This procedure allows users to normalize their calculations to whatever source strength they
desire. The default normalization is to weight one per MCNP particle. A second normalization
to the number of Monte Carlo histories is made in the results so that the expected means will be
independent of the number of source particles actually initiated in the MCNP calculation.

The utility of particle weight, however, goes far beyond simply normalizing the source. Every
Monte Carlo biasing technique alters the probabilities of random walks executed by the
particles. The purpose of such biasing techniques is to increase the number of particles that
sample some part of the problem of special interest (1) without increasing (sometimes actually
decreasing) the sampling of less interesting parts of the problem, and (2) without erroneously
affecting the expected mean physical result (tally). This procedure, properly applied, increases
precision in the desired result compared to an unbiased calculation taking the same computing
time. For example, if an event is magl@ times as likely to occur (as it would occur without
biasing), the tally ought to be multiplied H/2  so that the expected average tally is unaffected.
This tally multiplication can be accomplished by multiplying the particle weight /&

because the tally contribution by a particle is always multiplied by the particle weight in MCNP.
Note that weights need not be integers.

In short, particle weight is a number carried along with each MCNP particle, representing that
particle's relative contribution to the final tallies. Its magnitude is determined to ensure that
whenever MCNP deviates from an exact simulation of the physics, the expected physical result
nonetheless is preserved in the sense of statistical averages, and therefore in the limit of large
MCNP particle numbers. Its utility is in the manipulation of the number of particles, sampling
just a part of the problem to improve the precision of selected results obviating a full unbiased
calculatior-with its added cost in computing tirte achieve the same results and precision.
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B. Particle Tracks

When a patrticle starts out from a source, a particle track is created. If that track is split 2 for 1 at
a splitting surface, a second track is created and there are now two tracks from the original source
particle, each with half the single track weight. If one of the tracks has an (n,2n) reaction, one
more track is started for a total of three. A track refers to each component of a source particle
during its history. Track length tallies use the length of a track in a given cell to determine a
guantity of interest, such as fluence, flux, or energy deposition. Tracks crossing surfaces are used
to calculate fluence, flux, or pulse-height energy deposition (surface estimators). Tracks
undergoing collisions are used to calculate multiplication and criticality (collision estimators).
Within a given cell of fixed composition, the method of sampling a collision along the track is

determined using the following theory. The probability of a first collision for a particle between
| andl + d along its line of flight is given by

-3,
p(hdl = e zdl

whereZ, is the macroscopic total cross section of the medium and is interpreted as the
probability per unit length of a collision. Settifghe random number on [0,1), to be

- -5
¢ :roe Ztsths =1-¢" |
it follows that
_ 1
| = ZtIn(l €)

But, becausel — ¢ is distributed in the same mannérasd hence may be replaced ywe
obtain the well-known expression for the distance to collision,

_1
I = gtm(E)

C. Neutron Interactions

When a particle (representing any number of neutrons, depending upon the particle weight)
collides with a nucleus, the following sequence occurs:

1. the collision nuclide is identified;
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either the 4, treatment is used or the velocity of the target nucleus is sampled for
low—energy neutrons;

3. photons are optionally generated for later transport;
4. neutron capture (that is, neutron disappearance by any process) is modeled;

5. unless the &b treatment is used, either elastic scattering or an inelastic reaction is
selected, and the new energy and direction of the outgoing track(s) are determined;

6. if the energy of the neutron is low enough and an appropria@g)s@ble is present,
the collision is modeled by the&{) treatment instead of by step 5.

1. Section of Collision Nuclide

If there aren different nuclides forming the material in which the collision occurred, agdsf
arandom number on the unit interval [0,1), thenkfeuclide is chosen as the collision nuclide
if

k-1 n k

> Zi<&) s H %y

i=1 i=1 i=1
wherez, is the macroscopic total cross section of nualide . If the energy of the neutron is low
enough (below about 4 eV) and the approprisites) table is present, the total cross section is
the sum of the capture cross section from the regular cross-section table and the elastic and
inelastic scattering cross sections from tep) table. Otherwise, the total cross section is taken
from the regular cross-section table and is adjusted for thermal effects as described below.

2. Free Gas Thermal Treatment

A collision between a neutron and an atom is affected by the thermal motion of the atom, and in
most cases, the collision is also affected by the presence of other atoms nearby. The thermal
motion cannot be ignored in many applications of MCNP without serious error. The effects of
nearby atoms are also important in some applications. MCNP uses a thermal treatment based
on the free gas approximation to account for the thermal motion. It also has an ex@|it S(
capability that takes into account the effects of chemical binding and crystal structure for
incident neutron energies below about 4 eV, but is available for only a limited number of
substances and temperatures. Tta&l$capability is described later on page 2-53.

The free gas thermal treatment in MCNP assumes that the medium is a free gas and also that, in
the range of atomic weight and neutron energy where thermal effects are significant, the elastic
scattering cross section at zero temperature is nearly independent of the energy of the neutron,
and that the reaction cross sections are nearly independent of temperature. These assumptions
allow MCNP to have a thermal treatment of neutron collisions that runs almost as fast as a
completely nonthermal treatment and that is adequate for most practical problems.
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With the above assumptions, the free gas thermal treatment consists of adjusting the elastic cross
section and taking into account the velocity of the target nucleus when the kinematics of a
collision are being calculated. Note that Doppler broadening of the inelastic cross sections is
assumed to have already been done in the processing of the cross section libraries. The free gas
thermal treatment effectively applies to elastic scattering only.

a. AdjustingtheElasticCrossSection: The first aspect of the free gas thermal treatment
is to adjust the zero-temperature elastic cross section by raising it by the factor

F=(1+ 0_5/a2)erf(a) + eXp(—az)/(a«/ﬁ) ’

wherea = ./AE/ KT , A =atomic weigh& = neutron energy, antl= temperature. For speed,

F is approximated b = 1 + 0.5/& whena =2 and by linear interpolation in a table of 51
values ofaF when a < 2. Both approximations have relative errors less than 0.0001. The total
cross section also is increased by the amount of the increase in the elastic cross section.

The adjustment to the elastic and total cross sections is done partly in the setup of a problem and
partly during the actual transport calculation. No adjustment is made if the elastic cross section

in the data library was already processed to the temperature that is needed in the problem. If all
of the cells that contain a particular nuclide have the same temperature, constant in time, that is
different from the temperature of the library, the elastic and total cross sections for that nuclide
are adjusted to that temperature during the setup so that the transport will run a little faster.
Otherwise, these cross sections are reduced, if necessary, to zero temperature during the setup
and the thermal adjustment is made when the cross sections are used. For speed, the thermal
adjustment is omitted if the neutron energy is greater30a8rkT/A At that energy the

adjustment of the elastic cross section would be less than 0.1%.

b. SamplingheVelocityof theTargetNucleus: The second aspect of the free gas thermal
treatment consists of taking into account the velocity of the target nucleus when the kinematics
of a collision are being calculated. The target velocity is sampled and subtracted from the
velocity of the neutron to get the relative velocity. The collision is sampled in the target-at-rest
frame and the outgoing velocities are transformed to the laboratory frame by adding the target
velocity.

There are different schools of thought as to whether the relative energy between the neutron and
target,E,, or the laboratory frame incident neutron energy (target-at-tggt3hould be used for

all the kinematics of the collisior, is used in MCNP to obtain the distance-to-collision, select

the collision nuclide, determine energy cutoffs, generate photons, generate fission sites for the
next generation of a KCODE criticality problem, o, ) scattering, and for capturg, is

used for everything else in the collision process, namely elastic and inelastic scattering,
including fission and (n,xn) reactions. It is shown in Eqn. 2.1Bhas based upon,, thatis

based upon the elastic scattering cross section, and, thekgfmréruly valid only for elastic
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scatter. However, the only significant thermal reactions for stable isotopes are absorption, elastic
scattering, and fissioh®'Ta has a 6 keV threshold inelastic reaction; all other stable isotopes
have higher inelastic thresholds. Metastable nuclide$fi®8Am have inelastic reactions all the

way down to zero, but these inelastic reaction cross sections are neither constant nor 1/v cross
sections and these nuclides are generally too massive to be affected by the thermal treatment
anyway. Furthermore, fission is very insensitive to incident neutron energy at low energies. The
fission secondary energy and angle distributions are nearly flat or constant for incident energies
below about 500 keV. Therefore, it makes no significant differenEgig used only for elastic

scatter or for other inelastic collisions as well. Atthermal energies, whEtlwgiE, is used only

makes a difference for elastic scattering.

If the energy of the neutron is greater td48A kT and the target is ndH, the velocity of the

target is set to zero. Otherwise, the target velocity is sampled as follows. The free-gas kernel is
a thermal interaction model that results in a good approximation to the thermal flux spectrum in
avariety of applications and can be sampled without tables. The effective scattering cross section
in the laboratory system for a neutron of kinetic en&rgy

65 (B = L (V.. V.o p(V) AVt 2.1)
s _VnII s\ Vrel relp 2 :

Here, V¢ is the relative velocity between a neutron moving with a scalar vel&gignd a target nucleus moving
with a scalar velocity, andl; is the cosine of the angle between the neutron and the target direction-of-flight
vectors. The equation fa,, is

1
2
Vo = (vrz] +V2- 2v, Vut)

rel —

The scattering cross section at the relative velocity is denoteg(\py), and p(V) is the
probability density function for the Maxwellian distribution of target velocities,

p(V) = _4 g3y

2e—BZV2
1/2
11

with 3 defined as

B = [AMnD:Z—L

kT

whereA is the mass of a target nucleus in units of the neutron iMgss the neutron mass in
MeV-sh/cn?, andkT is the equilibrium temperature of the target nuclei in MeV.
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The most probable scalar velocityof the target nuclei is &/ which corresponds to a kinetic
energy ofkT for the target nuclei. This is not the average kinetic energy of the nuclei, which is
3kT/2 The quantity that MCNP expects on the TMPn input cakd end not just (see page
3-121). Note thakTis not a function of the particle mass and is therefore the kinetic energy at
the most probable velocity for particles of any mass.

Equation (2.1) implies that the probability distribution for a target velocégd cosing, is

(Ve VielP(V)
POV ) = ZOelff(El)v

It is assumed that the variation of (V) with target velocity can be ignored. The justification
for this approximation is that (1) for light nuclei(v,.,)  is slowly varying with velocity, and
(2) for heavy nuclei, where(v,.;) can vary rapidly, the moderating effect of scattering is small
so that the consequences of the approximation will be negligible. As a result of the
approximation, the probability distribution actually used is

2\ 42
P(V, 1) O JVoV2—2vy pvie® Y

Note that the above expression can be written as

A/vﬁ +Vi- 2VV 1
v,+V

BZVZ

2\ ,2
(V, 1) O ACHMETAYE Y

As a consequence, the following algorithm is used to sample the target velocity.

1. With probabilitya

1/(1+ (JﬁBVn/ 2)) , the target velocity is sampled from the

3 pAV?
eB

distribution P, (V) 2[34V . The transformatiod = ./y/B  reduces this

distribution to the sampling distribution f&(y) = ye_y . MCNP actually codes
1-a.
2. With probabilityl — a, the target velocity is sampled from the distribution

P,(V) = (4B‘°’/A/1_I)Vze_[3 v Substitutingv = y/B reduces the distribution to the

2
sampling distribution for yP(y) = (4/«/1_'t)y2e_y

3. The cosine of the angle between the neutron velocity and the target velocity is sampled
uniformly on the interva-l < p, < + 1.
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4. The rejection functioR(V, ;) is computed using

A/vrz] +V2- 2V VU .
v, +V B

R(V, W) =

With probabilityR(V,), the sampling is accepted; otherwise, the sampling is rejected and the
procedure is repeated. The minimum efficiency of this rejection algorithm averagedisver

68% and approaches 100% as either the incident neutron energy approaches zero or becomes
much larger thakT.

3. Optional Generation of Photons

Photons are generated if the problem is a combined neutron/photon run and if the collision
nuclide has a nonzero photon production cross section. The number of photons produced is a
function of neutron weight, neutron source weight, photon weight limits (entries on the PWT
card), photon production cross section, neutron total cross section, cell importance, and the
importance of the neutron source cell. No more than 10 photons may be born from any neutron
collision. In a KCODE calculation, secondary photon production from neutrons is turned off
during the inactive cycles.

Because of the many low-weight photons typically created by neutron collisions, Russian
roulette is played for particles with weight below the bounds specified on the PWT card,
resulting in fewer particles, each having a larger weight. The created photon weight before
Russian roulette is

W = Wnoy
P oT '’
where W, = photon weight
W, = neutron weight
o, = photon production cross section
o7 = total neutron cross section.

Both g, andoy are evaluated at the incoming neutron energy without the effects of the thermal
free gas treatment because nonelastic cross sections are assumed independent of temperature.

The Russian roulette game is played according to neutron cell importances for the collision and
source cell. For a photon produced in c&there the minimum weight set on the PWT card is
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wmn , letl, be the neutron importance in ceind letl be the neutron importance in the source

ceII If W, > W "N &1, one or more photons will be produced. The number of photons
created |3\| whereN = (W OR)/(5* w™ Ol + 1. Np< 10. Each photon is stored in the
bank with Welgth/N If Wp <W m':' DISII,, Russian roulette is played and the photon
survives with probabllltWVpDI /(W in ¢) and is given the WelghV,V DISII

Ifwcalgn t windows are not used and if the weight of the starting neutrons is not unity, setting all
theW; " onthe PWT card to negative values will make the photon minimum weight relative to
the neutron source weight. This will make the number of photons being created roughly
proportional to the biased collision rate of neutrons. It is recommended for most applications that
negative numbers be used and be chosen to produce from one to four photons per source neutron.
The default values fow.""  on the PWT card ate which should be adequate for most

problems using cell importances.

If energy-independent weight windows are used, the entries on the PWT card should be the
same as onthe WWNL1:P card. If energgpendent photon weight windows are used, the entries
on the PWT card should be the minimum WWNn:P entry for each cell, where n refers to the
photon weight window energy group. This will cause most photons to be born within the weight
window bounds.

Any photons generated at neutron collision sites are temporarily stored in the bank. There are
two methods for determining the exiting energies and directions, depending on the form in which
the processed photon production data are stored in a library. The first method has the evaluated
photon production data processed into an “expanded foffiat this format, energy

dependent cross sections, energy distributions, and angular distributions are explicitly provided
for every photorproducing neutron interaction. In the second method, used with data
processed from older evaluations, the evaluated photon production data have been collapsed so
that the only information about secondary photons is in a matrix of 20 equally probable photon
energies for each of 30 incident neutron energy groups. The sampling techniques used in each
method are now described.

a. Expanded Photon Production Method: In the expanded photon production method,
the reactiom responsible for producing the photon is sampled from

n-1 N n
Zoi<220is Zoi

i=1 i=1 i=1

whereg is a random number on the interval (ONL)s the number of photon production

reactions, and is the photon production cross section for readtiatnthe incident neutron

energy. Note that there is no correlation between the sampling of the type of photon production
reaction and the sampling of the type of neutron reaction described on page 2—36.

April 10, 2000 2-33



CHAPTER 2
PHYSICS

Just as every neutron reaction (for exampie2K)) has associated energy-dependent angular and
energy distributions for the secondary neutrons, every photon production reaction (for example,
(n,py)) has associated energy-dependent angular and energy distributions for the secondary
photons. The photon distributions are sampled in much the same manner as their counterpart
neutron distributions.

All nonisotropic secondary photon angular distributions are represented by 32 equiprobable
cosine bins. The distributions are given at a number of incident neutron energies. All photon-
scattering cosines are sampled in the laboratory system. The sampling procedure is identical to
that described for secondary neutrons on page 2-37.

Secondary photon energy distributions are also a function of incident neutron energy. There are
two representations of secondary photon energy distributions allowed in ENDF/B format:
tabulated spectra and discrete (line) photons. Correspondingly, there are three laws used in
MCNP for the determination of secondary photon energies. Law 4 is an exact representation of
tabulated photon spectra. Law 2 is used for discrete photons. Law 44 is for discrete photon lines
with a continuous background. These laws are described beginning on page 2—-41.

The expanded photon production method has clear advantages over the original 30 x 20 matrix

method described below. In coupled neutron/photon problems, users should attempt to specify
data sets that contain photon production data in expanded format. Such data sets are identified
by “YES P(E)” entries in the GPD column in Table G.2 in Appendix G.

b. 30x 20PhotonProductiorMethod: For lack of better terminology, we will refer to the
photon production data contained on older libraries as “30 x 20 photon production” data. In
contrast to expanded photon production data, there is no information about individual photon
production reactions in the 30 x 20 data.

The only secondary photon data are a 30 x 20 matrix of photon energies; that is, for each of 30
incident neutron energy groups there are 20 equally probable exiting photon energies. There is
no information regarding secondary photon angular distributions; therefore, all photons are
taken to be produced isotropically in the laboratory system.

There are several problems associated with 30 x 20 photon production data. The 30 x 20 matrix
is an inadequate representation of the actual spectrum of photons produced. In particular,
discrete photon lines are not well represented, and the high-energy tail of a photon continuum
energy distribution is not well sampled. Also, the multigroup representation is not consistent
with the continuous-energy nature of MCNP. Finally, not all photons should be produced
isotropically. None of these problems exists for data processed into the expanded photon
production format.
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4. Capture

Capture is treated in one of two ways: analog or implicit. Either way, the incident incoming
neutron energy does not include the relative velocity of the target nucleus from the free gas
thermal treatment because nonelastic reaction cross sections are assumed to be nearly
independent of temperature. That is, only the scattering cross section is affected by the free gas
thermal treatment. In MCNP, “absorption” and “capture” are used interchangeably, both
meaning (n,0n), and, ando, are used interchangeably also.

a. AnalogCapture: In analog capture, the particle is killed with probabdifio, where
0,andog are the absorption and total cross sections of the collision nuclide at the incoming
neutron energy. The absorption cross section is specially defined for MCNP as the sum of all
(n,¥) cross sections, wheseis anything except neutrons. Thagis the sum ob, o, 0y, 5 Ty g,

.. etc. For all particles killed by analog capture, the entire particle energy and weight are
deposited in the collision cell.

b.  Implicit Capture: For implicit capture, the neutron weigtis reduced to \yas
follows:

. Oarl
Wn - %L_O_TD Vvn

If the new weight W, is below the problem weight cutoff (specified on the CUT card), Russian
roulette is played, resulting overall in fewer particles with larger weight.

For implicit capture, a fractioa /ot of the incident particle weight and energy is deposited in
the collision cell corresponding to that portion of the particle that was captured. Implicit capture
is the default method of neutron capture in MCNP.

c. Implicit CaptureAlong a Flight Path: Implicit capture also can be done continuously
along the flight path of a particle trajectory as is the common practice in astrophysics. In this
case, the distance to scatter, rather than the distance to collision, is sampled. The distance to
scatter is

1
= — In(1-§) .

S

The particle weight at the scattering point is reduced by the capture loss,
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where W' = reduced weight after capture loss,
W = weight before capture along flight path,
0, = absorption cross section,
Os = scattering cross section,
0, = 0Og+0,= total cross section,
I = distance to scatter, and
& = random number.

Implicit capture along a flight path is a special form of the exponential transformation coupled
with implicit capture at collisions. (See the description of the exponential transform on

page 2—-141.) The path length is stretched in the direction of the partilé, and the stretching
parameter ip = Z,/%;. Using these values the exponential transform and implicit capture at
collisions yield the identical equations as does implicit capture along a flight path.

Implicit capture along a flight path is invoked in MCNP as a special option of the exponential
transform variance reduction method. It is most useful in highly absorbing media, thgis,
approaches 1. When almost every collision results in capture, it is very inefficient to sample
distance to collision. However, implicit capture along a flight path is discouraged. In highly
absorbing media, there is usually a superior set of exponential transform parameters. In
relatively nonabsorbing media, it is better to sample the distance to collision than the distance to
scatter.

5. Elastic and Inelastic Scattering

If the conditions for the&S(@,[3) treatment are not met, the particle undergoes either an elastic or
inelastic collision. The selection of an elastic collision is made with probability

0-el — Gel
Ojp + Og| 01 -0,

where

Og Is the elastic scattering cross section.
0, s the inelastic cross section; includes any neutron-out precess}, (n,f), (n,np), etc.

0, is the absorption cross sectidg(n, x), #n , thatis, all neutron disappearing
reactions.

o7 is the total cross sectiooy = O + 0j, + O,
Both o, andoy are adjusted for the free gas thermal treatment at thermal energies.

The selection of an inelastic collision is made with the remaining probability
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GT_O-a

If the collision is determined to be inelastic, the type of inelastic reactissampled from

n-1 N n

Zoi<ézois 20’i ,

i=1 i=1 i=1
whereg is a random number on the interval [0,l)is the number of inelastic reactions, and the
o;'s are the inelastic reaction cross sections at the incident neutron energy.

For both elastic and inelastic scattering, the direction of exiting particles usually is determined
by sampling angular distribution tables from the cross-section files. This process is described
shortly. For elastic collisions and discrete inelastic scattering from levels, the exiting particle
energy is determined from two body kinematics based upon the center-of-mass cosine of the
scattering angle. For other inelastic processes, the energy of exiting particles is determined from
secondary energy distribution laws from the cross-section files, which vary according to the
particular inelastic collision modeled.

a. Sampling of Angular Distrilitions: The direction of emitted particles is sampled in
the same way for most elastic and inelastic collisions. The cosine of the angle between incident
and exiting particle directiong, is sampled from angular distribution tables in the collision
nuclide's cross-section library. The angular distribution tables consist of 32 equiprobable cosine
bins and are given at a number of different incident neutron energies. The cosines are either in
the center-of-mass or target-at-rest system, depending on the type of readisith incident
neutron energy, iE,, is the energy of table, and ifE,, is the energy of table + 1, then a value
of u is sampled from table + 1 with probability € — E,))/(E,, + 1 — E;) and from tablen with
probability €, + 1 — E)/(E,+1 — E,). A random numbeg on the interval [0,1) is then used to
select the'" cosine bin such that 32 + 1. The value oft is then computed as

=1+ (328 = 1)(Mis1 — 1)

If, for some incident neutron energy, the emitted angular distribution is isofpapichosen
fromp =¢&', whereg' is a random number on the interval [1). (Strictly, in MCNP random
numbers are always furnished on the interval [0,1). Thus, to congpate[-1,1) we calculate
¢'=2¢& -1, wheret is a random number on [0,1).)

For elastic scattering, inelastic level scattering, and some ENDFiBelastic reactions, the
scattering cosine is chosen in the center-of-mass system. Conversion must then beppgde to
the cosine in the target-at-rest system. For other inelastic reactions, the scattering cosine is
sampled directly in the target-at-rest system.
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The incident particle direction cosines,,{/,,W,), are rotated to new outgoing target-at-rest
system cosinesu( v, w, through a polar angle whose cosing,ig, and through an azimuthal
angle sampled uniformly. For random numbgrandé, on the interval{1,1) with rejection
criterion Ei Eg <1, the rotation scheme is (Ref. 2, pg. 54):

J 1= B (E1UW, — &,0)

JE+ED(L-W)

1= U (E VoW, + E5U,)

JE+ED(L-W)

u= uoulab"'

v = Vo“lab"'

1) (1— ) (1-w7)

JEE+E5)

W = WoMjap—

If 1-w’00 , then

N 1- p'lzab(zluovo + E»ZWO)

JE+eHa-v)

u= uo“lab+

£1J(1— 2 (1 —P)

JET+E))
N 1- “Izab(élwovo B E'2uo)

JE+eHa-v)

If the scattering distribution is isotropic in the target-at-rest system,it is possible to use an even
simpler formulation that takes advantage of the exiting direction cosineg))( being
independent of the incident direction cosinegvg,w,). In this case,

V = VoMjap—

W= Wo“lab +

u=285+285-1

1—u2
v=2_g
e+l
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w =&,

whereé; and¢, are rejected iEf + 55 >1 .

b. Elastic Scattering: The particle direction is sampled from the appropriate angular
distributiontables, and the exiting energy,,;, is dictated by two-body kinematics:

1
EOUt - éEin[(l_a)p’cm-l- 1+ G]

{1 + A%+ 2Aucm}
n (1+ A)2

whereE;,, = incident neutron energy,,,= center-of-mass cosine of the angle between incident
and exiting particle directions,

L= A-1
O + 10

andA = mass of collision nuclide in units of the mass of a neutron (atomic weight ratio).

c. InelasticScattering: The treatment of inelastic scattering depends upon the particular
inelastic reaction chosen. Inelastic reactions are definegyas€actions such as(n"), (n, 2n),
(n, f), (n, n'a) in whichy includes at least one neutron.

For many inelastic reactions, such as2f)), more than one neutron can be emitted for each
incident neutron. The weight of each exiting particle is always the same as the weight of the
incident particle minus any implicit capture. The energy of exiting particles is governed by
various scattering laws that are sampled independently from the cross-section files for each
exiting particle. Which law is used is prescribed by the particular cross-section evaluation used.
In fact, more than one law can be specified, and the particular one used at a particular time is
decided with a random number. In an 2n) reaction, for example, the first particle emitted may
have an energy sampled from one or more laws, but the second particle emitted may have an
energy sampled from one or more different laws, depending upon specifications in the nuclear
data library. Because emerging energy and scattering angle is sampled independently for each
particle, there is no correlation between the emerging particles. Hence energy is not conserved
in an individual reaction because, for example, a 14-MeV particle could conceivably produce
two 12-MeV particles in a single reaction. But the net effect of many particle histories is
unbiased because on the average the correct amount of energy is emitted. Results are biased only
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when quantities that depend upon the correlation between the emerging particles are being
estimated.

Users should note that MCNP follows a very particular convention. The exiting particle energy
and direction are always given in the target-at-rest (laboratory) coordinate system. For the
kinematical calculations in MCNP to be performed correctly, the angular distributions for
elastic, discrete inelastic level scattering, and some ENBH/Belastic reactionsnustbe

givenin the center-of-mass system, and the angular distributions for all other reactions {\it must}
be given in the target-at-rest system. MCNP does not stop if this convention is not adhered to,
but the results will be erroneous. In the checking of the cross-section libraries prepared for
MCNP at Los Alamos, however, careful attention has been paid to ensure that these conventions
are followed.

The exiting particle energy and direction in the target—at—rest (laboratory) coordinate system are
related to the centeof-mass energy and direction as follotvs:

E+2 A+1) /EE .,
= = Bt [ Hom( ; < and
(A+1) B
E' 1 [E
Hiab = Hom)| £ * 2 1& '
where
E' = exiting particle energy (laboratory),
E'., = exiting particle energy (center-of-mass),
E = incident particle energy (laboratory),
Mem = cosine of centelof-mass scattering angle,
Map = cosine of laboratory scattering angle,
A = atomic weight ratio (mass of nucleus divided by mass of incident particle.)

For point detectors it is necessary to convert

d“cm
dMjap

P(Hjap) = P(Hcm)

where
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A+l |
cm Ecm
ducm - E'/E'.n
dijap E Ha | E
E'em ATINE'
E'
Elcm

1 “IabF
A+ 1INE

d. NonfissioninelasticScatterin;andEmissionLaws: Nonfission inelastic reactions are
handled differently from fission inelastic reactions. For each nonfission redttioarticles are
emitted, wheré\,, is an integer quantity specified for each reaction in the cross-section data
library of the collision nuclide. The direction of each emitted particle is independently sampled
from the appropriate angular distribution table, as was described earlier. The energy of each
emitted particle is independently sampled from one of the following scattering or emission laws.
Energy and angle are correlated only for ENDF/B--VI laws 44 and 67. For completeness and
convenience we list all the laws together, regardless of whether the law is appropriate for
nonfission inelastic scattering (for example, Law~3), fission spectra (for example, Law 11), both
(for example, Law 9), or neutron-induced photon production (for example, Law 2). The
conversion from centeof-mass to targeat-rest (laboratory) coordinate systems is as above.

Law 1l (ENDF law 1): Equiprobable energy bins.
The index and the interpolation fractionare found on the incident energy grid for the
incident energy;,, such that

Ei<En<E., and
Ein = Ej+r(Ei,1—E) .

A random number on the unit inten& is used to select an equiprobable energykbin
from theK equiprobable outgoing energigg

k=§K+1

Then scaled interpolation is used with random numbgeandé; on the unit interval.
Let
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Ex = Eix +r(Ej. 1k —Ej k) ;and
| =i if E&>r or
| =i+1if §&5<r and
E' = E «+&(E k+1—E k) then

(E'-F 1)(Ex —Ey)

E
Bk —Ei1

= E1+

out

Law 2 Discrete photon energy.
The value provided in the library . The secondary photon energy

Eoutis either

Eout = Eg for non-primary photons or

Eout = Eg + [A/(A+1)]E;, for primary photons,

whereA is the atomic weight to neutron weight ratio of the targetgnd
is the incident neutron energy.

Law 3 (ENDF law 3): Inelastic scatteringif’) from nuclear levels.
The value provided in the library @

-2

Law 4 Tabular distribution (ENDF law 4).
For each incident neutron enerythere is a pointer to a table of secondary energies
E; «» probability density functionp; ,, and cumulative density functiog,. The index
i and the interpolation fractianare found on the incident energy grid for the incident

energyk;, such that
Ei<Ein<Ei.y and
En = Ei+r(Ej.1—E) .

A random number on the unit intengglis used to sample a secondary energykbin
from the cumulative density function

Gk (i1 k=G k) <81<C k+1T(Ci 41 ke1 i k+1)
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If these are discrete line spectra, then the sampled eBeginterpolated between
incident energy grids as

B =B By kB -
It is possible to have all discrete lines, all continuous spectra, or a mixture of discrete

lines superimposed on a continuous background. For continuous distributions, the
secondary energy bhkis sampled from

C k<€1<C k+1

wherel =iif {&;>randl =i+ 1if &, <r ,and§,is arandom number on the unitinterval.
For histogram interpolation the sampled energy is

For linear-linear interpolation the sampled energy is

] — U

2 P k+17Pr k
%\/Pl,k+2|:—_———_E - £ :|(€1_Cl,k)_pl,kD
. Lk+1 Bl k [
E' = E|,k+[,‘ 0
O [M} 0
S Eik+1—Eik %

For neutron—induced photoris, ; = E' and the angle is selected as described on
page 2—-37. That is, the photon secondary energy is sampled from either of the two
bracketing incident energy binssi orl =i+ 1.

The neutron secondary energy must be interpolated between the incident eneigy bins
andi + 1 to properly preserve thresholds. Let

(BB J)(E-E)
Eout = E1+ )

(B« —Ep 1)
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The outgoing neutron energy is then adjusted to the laboratory system, if it is in the
center-of-mass system, and the outgoing angle is selected as described on page 2—-37.

Law 5 (ENDF law 5): General evaporation spectrum.
The functiong(x) is tabulated versuysand the energy is tabulated versus incident
energyk;,. The law is then

E t
f(Ein - out) = gD-I-(OElIJn)E

This density function is sampled by

Eout = X(€) T(Bp).
whereT(E,,) is a tabulated function of the incident energy and
c(§) is a table of equiprobabjevalues.

Law 7 (ENDF law 7): Simple Maxwell Fission Spectrum.

_Eout/T( Ein)
out

f(Ein - out) =C* JE
The nuclear temperatuli€E,,) is a tabulated function of the incident energy. The

normalization constar@@ is given by

cl- 3/25/_ D\/(Em U)D /\/(Em U) —(E,n—U)/T:|

U is a constant provided in the library and limigto 0O<E_ ;< E;,—U . In MCNP
this density function is sampled by the rejection scheme

Eout T(E.n){El %3 4 In }

1+2

Whererilé &», &3, and¢, are random numbers on the unit intendglandé,, are rejected
if El +&5,>1

Law 9 (ENDF law 9): Evaporation spectrum.

Eout/T(Eln)
f(Ei, - Eou) = C Eq, ,
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where the nuclear temperaturég,,) is a tabulated function of the incident energy. The
energy U is provided in the library and is assigned sa8jjats limited by
0<E, < E;j,—U. The normalization consta@tis given by

—(Ej,—U)/T

ct=Tq1-e (1+(E,-U)/T)] .

In MCNP this density function is sampled by

Eout = —T(Ein)In(&4&5)

whereé, and¢, are random numbers on the unit interval, &hdnd¢, are rejected if
Eout> Ein — U.

Law 11 (ENDF law 11): Energy Dependent Watt Spectrum.

EOU[/ ( |n)

f(Ei, - Eoud) = sinh,/b(E;,)E

out -

The constanta andb are tabulated functions of incident energy bnd a constant
from the library. The normalization constahts given by

C_l_%/\/_engilb%{erfD (Ein—U) FD D/( in U) [é

—aexp{_ (E'“—_U)} sinh,/b(E;,—U) ,
a

where the constamt limits the range of outgoing energy so tbat E
This density function is sampled as follows. Let

/\/m + Ell + abD. ThenEy, = —ag In&;.

Eoutis rejected if

<E,-U

out=

[(1-g)(1-In&;)—InE,)° >bE,, |,

whereg; and¢, are random numbers on the unit interval.
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Law 22 (UK law 2): Tabular linear functions of incident energy out.
Tables ofP;, C;, andT; are given at a number of incident energiesif
E <E,< EI +1 then theh P;, Cj, andT; tables are used.

Eout = Cik(Ein—=Ti)
wherek is chosen according to

k+1

ZP <E<2P ,

ji=1 ji=1

whereg is a random number on the unit interval [0,1).
Law 24 (UK law 6): Equiprobable energy multipliers. The law is

Eout = EinT(Ein) :

The library provides a table &f equiprobable energy multipliefs, for a grid of
incident neutron energi€s. For incident energg;,, such that

E,<E <E ., ,
the random numbegs andé, on the unit interval are used to fiffid
k=¢gK+1
T = Ti,k + EZ(Ti,k+l_Ti,k) and then
Eout = EinT -

Law 44 Tabular Distribution (ENDF/B-VI file 6 law=1 lang=2, Kalbach-87 correlated energy-
angle scattering). Law 44 is a generalization of law 4. For each incident neutron energy
E; there is a pointer to a table of secondary enekgigprobability density functions
P k» cumulative density functiorg,, precompound fractiorfg , and angular
distribution slope value&; . The index and the interpolation fractianare found on

the incident energy grid for the incident enekyysuch that
Ei <Ej <Ei and
Ein:Ei+r(Ei+1_Ei)

A random number on the unit intengglis used to sample a secondary energykbin
from the cumulative density function
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Cikt T (Crrk—Cipd) <€1<Gs1 + T Cispks1 ~ Cisr) -

If these are discrete line spectra, then the sampled eBeiginterpolated between
incident energy grids as

E' = E (+r(Ei  k—EiW -

It is possible to have all discrete lines, all continuous spectra, or a mixture of discrete
lines superimposed on a continuous background. For continuous distributions, the
secondary energy bhkis sampled from

Ck<&1<Cks+1

wherel =iif {&;>randl=i+1 if {,<r,and§,is arandom number on the unitinterval.
For histogram interpolation the sampled energy is

For linear-linear interpolation the sampled energy is

O] _

2 p p
E/\/pl,k"'2|:—E|,k+l_E|,k:|(El_Cl,k)_pl,k
o Lk+1~ Eik

E' = E|’k+D

I Ly o

E Prk+1— Pk
R Bixe1— Bk
Unlike Law 4, the sampled energy is interpolated between the incident energyahuhs
i +1 for both neutron-induced photons and neutrons. Let

El = Ei,1+r(Ei+1,1—Eill) and
Ex = Eix +r(Eisp k—Eik); then
(E x —E 1)

For neutron-induced photons, the outgoing angle is selected as described on

page 2-37. For neutroris, ;is always in the center-of-mass system and must be
adjusted to the laboratory system. The outgoing neutron center-of-mass scattering angle
W is sampled from the Kalbach-87 density function

Egu = Eq +

out
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1 A .
P(H. By Eoue) = QW(A)[COSV(AM) + Rsinh( Au)]
using the random numbegg and¢, on the unit interval as follows. & > R, then let

T = (2§,—1)sinh(A) and

W= In(T+AJT2+1)/A |

orif &3 <R then

W =ln [E4eA+(1—E4)e_A}/A '

R andA are interpolated on both the incident and outgoing energy grids. For discrete
spectra,

A= Ai,k+r(Ai+1,k_Ai,k) J

R=Rk+r(Riipx—Riw -

For continuous spectra with histogram interpolation,

A=A
R=R, U

For continuous spectra with linear-linear interpolation,

A=At (Axa—AWE-E O/(E i1—E L)
R=R+*(Rx+1—RWE-E O/(E i1—E ) U

The Kalbach-87 formalism (Law 44) is also characterized by an energy-dependent
multiplicity in which the number of neutrons emerging from a collision varies. If the
number is less than one, Russian roulette is played and the collision can result in a
capture. If the number is greater than one, the usual MCNP approach is taken whereby
the additional particles are banked and only the first one contributes to detectors and
DXTRAN.

Law 66 N-body phase space distribution (ENDF/B-VI file 6 law 6).
The phase space distribution for particle the center-of-mass coordinate system is:
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3n/2-4
P.(W, E;p, T) = CJ/T(E =T) :
where all energies and angles are also in the center-of-mass syst&h and is the

maximum possible energy for partidleu andT. T is used for calculating,,. TheC,
normalization constants for= 3, 4, Sare:

4

max, 2
)

T(E;

C; =

_ 105
C4 = TWZ , and
32(EM™

c, - 256 O
14n(E"®)

E,"®is a fraction of the energy availablg,

where M is the total mass of tmgarticles being treatedy is the mass of particlie and

m
Ea: - Ein+Q1
mp+mr

wheremy is the target mass andg, is the projectile mass. For neutrons,

My A

m,+my A+l

and for a total mass ratiq) = M/m,

M —my B Ap—l
M Ap
Thus,
A -1
max _ "p oA 0
E = —Ap N 1Em+QD O
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The total mas#\, and the number of particles in the reactioare provided in the data
library. The outgoing energy is sampled as follows.

Let&;, i = 1,9 be random numbers on the unit interval. Then from rejection technique
R28 from the Monte Carlo Sampleaccep€; andg, if

Ei+§§s 1
and accepf; and¢, if
g2+85<1 O
Then let
p=¢& if n=3,
p=2¢&¢ if n=4, and

P = &58gé78g If N =5,

and let

2 2
« = —€4In(&7+&5) B

In&g ,
(&2 +82) ’

_ EIn(E3+€9)
(E5+E2)

_ X

X+y

—Inp, and

then

max

Eout = TE U

The cosine of the scattering angle is always sampled isotropically in the center-of-mass
system using another random num&gon the unit interval:
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Law 67 Correlated energy-angle scattering (ENDF/B-VI file 6 law 7).
For each incident neutron energy, first the exiting particle direptiersampled as
described on page 2-37. In other Law data, first the exiting particle energy is sampled
and then the angle is sampled. The indard the interpolation fractionare found on
the incident energy grid for the incident enekgy such that

E <E,<E ., and
Ein = Ei + r(Ei +1—Ei) 0
For each incident enerdy; there is a table of exiting particle direction cosipgsand
locatorsL, ;. This table is searched to find which ones bragkeamely,
Hij<H<Hjjsq U

Then the secondary energy tablesgandL;;,; are sampled for the outgoing particle energy.
The secondary energy tables consist of a secondary enerdy gricorobability density

functionsp; ., and cumulative density functioms; .. A random numbeg, on the unit interval

IS used to pick between incident energy indice§; € r then | =i + 1; otherwise| =i. Two

more random numbeés and&; on the unitinterval are used to determine interpolation energies.

If Ez<(H_Ul,j)/(ul,p,l—ui’j), then
Eix = Eijrix and m=j+1, if 1 =i O
Otherwise,
Ei,k = Ei,j,k and m= j, if I =i 0O

If €3 < (M = Mis1,j)/(Hisaj+1 — Hirnj), then

Eii1k=E+1j+c @and m=j+1, if I=i+10
Otherwise,
Eirik = Espjx and m=j if I =i+110

A random numbeg, on the unit interval is used to sample a secondary enerdy bin
from the cumulative density function

Cl,m,k<E4<CI,m,k+1

For histogram interpolation the sampled energy is
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—C
Er — E| " k+(E4 I,m,k) |:|
T P, m, k

For linear-linear interpolation the sampled energy is

O [l

O [~2 p -p 0

EV\/PI,m, k+2{E|’m'k+1 E"m’k}(h—cum, W~ P m k0

' I,bmk+1~ ~I,m, k ]
E' = E,’m’k+g 0
E pl,m,k+1_ pl,m,k E

E EI,m,k+1_EI,m,k %

The final outgoing enerdy,,; uses scaled interpolation. Let
E, =B 1+ 11— )
(E'-E )(Ex—Eyp)
(B x —E 1)

e. Fission Inelastic Scattering: For any fission reaction a number of neltpase
emitted according to the value ®{E;,) . The average number of neutrons per figéigp) ,
is either a tabulated function of energy or a polynomial function of energy. If | is the largest
integer less thai(E,,) , then

Then E,,; = E; +

No—I+1 if &<V(Ej)-1
N, =1 if &>V(E},)-I ,whereg is a random number.

The type of emitted neutron, either delayed or prompt, is then determined from the ratio of
delayedv,(E;,) to totab,..(E;,) as

if &<Vp(E)/Vi:(E;,) , produce a delayed neutron, or
if  &€>Vp(E;,)/Vioi(E;,) » produce a prompt neutron.
Each delayed fission neutron energy and time of emission is determined by sampling from the

abundance of each decay group and then the appropriate decay constant for time and tabular
emission distribution as specified in the evaluation is used.
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The energy of each prompt fission neutron is determined from the emission law as specified in
the evaluation. The three laws used for prompt fission neutron spectra are 7, 9, and 11. These
laws are discussed in the preceding section, starting on page 2—44.

The direction of each emitted neutron is sampled independently from the appropriate angular
distribution table by the procedure described on page 2-37.

The energy of each fission neutron is determined from the appropriate (that is, as specified in the
evaluation) emission law. The three laws used for fission neutron spectra are 7, 9, and 11. These
laws are discussed in the preceding section, starting on page 2—44. MCNP then models the
transport of the first neutron out after storing all other neutrons in the bank.

6. The S@.B) treatment

The S€,3) thermal scattering treatment is a complete representation of thermal neutron
scattering by molecules and crystalline solids. Two processes are allowed: (1) inelastic scattering
with cross sectiow;,, and a coupled energy-angle representation derived from an

ENDF/B S@,) scattering law, and (2) elastic scattering with no change in the outgoing neutron
energy for solids with cross sectiog, and an angular treatment derived from lattice parameters.
The elastic scattering treatment is chosen with probataliffo,, + 0;,). This thermal scattering
treatment also allows the representation of scattering by multiatomic molecules (for example,
BeO).

For the inelastic treatment, the distribution of secondary energies is represented by a set of
equally probable final energies (typically 16 or 32) for each member of a grid of initial energies
from an upper limit of typically 4 eV down to IB eV, along with a set of angular data for each
initial and final energy. The selection of a final endgggiven an initial energie can be
characterized by sampling from the distribution

N
1 1 !
PE'|(E<E<E,y) = 5 Y O[E'—pE | ~(1-p)E,1 ] .
i=1

whereE; andE;,; are adjacent elements on the initial energy grid,

_ Ei+1_E
P=E —E
i+1 i

N is the number of equally probable final energies,&nid thej™" discrete final energy for
incident energ¥;.
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There are two allowed schemes for the selection of a scattering cosine following selection of a
final energy and final energy indgxin each case, thgj)™" set of angular data is associated with
the energy transitiok = E, - E' = Ei |

(1.) The data consist of sets of equally probable discrete cogjnefor k=1,...y with v
typically 4 or 8. An indeX is selected with probabilit¥/v, andu is obtained by the relation

M= pui,j,k+(1—p)ui+1,j,k o

(2.) The data consist of bin boundaries of equally probable cosine bins. In this case,
random linear interpolation is used to select one set or the otherphimg the probability of
selecting the set corresponding to incident engfgyhe subsequent procedure consists of
sampling for one of the equally probable bins and then chopsimgformly in the bin.

For elastic scattering, the above two angular representations are allowed for data derived by an
incoherent approximation. In this case, one set of angular data appears for each incident energy
and is used with the interpolation procedures on incident energy described above.

For elastic scattering, when the data have been derived in the coherent approximation, a
completely different representation occurs. In this case, the data actually stored are the set of
parameter®,, where

o, = D/E for EpkSE<Epiyq

o (0)/E for E<Eg;

el
andEg, are Bragg energies derived from the lattice parameters. For incident dhsug that
Egk<E<Egke1,

P, =D;/D, for i =1,...,k

represents a discrete cumulative probability distribution that is sampled to obtaim index
representing scattering from tHEBragg edge. The scattering cosine is then obtained from the
relationship

W=1-2E/E O

Using next event estimators such as point detectors3ati) scattering cannot be done
exactly because of the discrete scattering angles. MCNP uses an approximaté%stikeate
in the next event estimation calculation replaces discrete lines with histograms of width

Oou <.1
See also page 2-95.
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7. Unresolved Resonance Range Probability Tables

Above the resonance range ( 2 - 25 keV2fou in ENDF/B-VI, 10 - 300 keV fof*®U in

ENDF/B-VI), continuous-energy neutron cross sections appear to be smooth as a function of
energy. This is not because the resonances end, but rather because the resonances are so close
together that they are unresolved. The cross section can, however, be represented by
probabilities. The unresolved resonance range probability table method provides a table of
probabilities for the cross sections in the unresolved resonance energy range. Properly sampling
unresolved resonances is important to properly model resonance self-shielding effects,
particularly for fast-spectra nuclear systems such as unmoderated critical assemblies.

Sampling cross sections from probability tables is straightforward. At each of a number of
incident energies there is a table of cumulative probabilities (typically 20) and the value of the
near-total, elastic, fission, and radiative capture cross sections and heat deposition numbers
corresponding to those probabilities. These data supplement the usual continuous data; if
probability tables are turned off (PHYS:N card), then the usual smooth cross section is used. But
if the probability tables are turned on (default), if they exist for the nuclide of a collision, and if
the energy of the collision is in the unresolved resonance energy range of the probability tables,
then the cross sections are sampled from the tables. The near-total is the total of the elastic,
fission, and radiative capture cross sections; it is not the total cross section, which may include
other absorption or inelastic scatter in addition to the near-total. The radiative capture cross
section is not the same as the usual MCNP capture cross section, which is more properly called
“destruction” or absorption and includes not only radiative capture but all other reactions not
emitting a neutron. Sometimes the probability tables are provided as factors (multipliers of the
average or underlying smooth cross section) which adds computational complexity but now
includes any structure in the underlying smooth cross section.

It is essential to maintain correlations in the random walk when using probability tables to
properly model resonance self-shielding. Suppose we sample the 17th level (probability) from
the table for a given collision. This position in the probability table must be maintained for the
neutron trajectory until the next collision, regardless of particle splitting for variance reduction

or surface crossings into various other materials whose nuclides may or may not have probability
table data. Correlation must also be retained in the unresolved energy range when two or more
cross-section sets for an isotope that utilize probability tables are at different temperatures.

D. Photon Interactions

Sampling of a collision nuclide, analog capture, implicit capture, and many other aspects of
photon interactions such as variance reduction, are the same as for neutrons. The collision
physics are completely different.

MCNP has two photon interaction models: simple and detailed.
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The simple physics treatment ignores coherent (Thomson) scattering and fluorescent photons
from photoelectric absorption. It is intended for high-energy photon problems or problems
where electrons are free and is also important for next event estimators such as point detectors,
where scattering can be nearly straight ahead with coherent scatter. The simple physics treatment
uses implicit capture unless overridden with the CUT:P card, in which case it uses analog
capture.

The detailed physics treatment includes coherent (Thomson) scattering and accounts for
fluorescent photons after photoelectric absorption. Form factors are used to account for electron
binding effects. Analog capture is always used. The detailed physics treatment is used below
energy EMCPF on the PHYS:P card, and because the default value of EMCPF is 100 MeV, that
means it is almost always used by default. It is the best treatment for most applications,
particularly for high Z nuclides or deep penetration problems.

The generation of electrons from photons is handled three ways. These three ways are the same
for both the simple and detailed photon physics treatments. (1) If electron transport is turned on
(Mode P E), then all photon collisions except coherent scatter can create electrons that are
banked for later transport. (2) If electron transport is turned off (no E on the Mode card), then a
thick-target bremsstrahlung model (TTB) is used. This model generates electrons, but assumes
that they travel in the direction of the incident photon and that they are immediately annihilated.
Any bremsstrahlung photons produced by the nontransported electrons are then banked for later
transport. Thus electron-induced photons are not neglected, but the expensive electron transport
step is omitted. (3) If IDES = 1 on the PHYS:P card, then all electron production is turned off,
no electron-induced photons are created, and all electron energy is assumed to be locally
deposited.

The TTB approximation cannot be used in Mo E problems, but it is the default for Mode P
problems.

1. Simple Physics Treatment

The simple physics treatment is intended primarily for higher energy photons. It is inadequate
for high Z nuclides or deep penetration problems. The physical processes treated are
photoelectric effect, pair production, and Compton scattering on free electrons. The
photoelectric effect is regarded as an absorption (without fluorescence), scattering (Compton) is
regarded to be on free electrons (without use of form factors), and the highly forward coherent
Thomson scattering is ignored. Thus the total cross sestisrmegarded as the sum of three
components:

0, =0

cto,,+0o, U

p pp
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a. Photoelectric dééct: This is treated as a pure absorption by implicit capture with a
corresponding reduction in the photon weldiET, and hence does not result in the loss of a
particle history except for Russian roulette played on the weight cutoff. The noncaptured weight
WGT(1- 0,day) is then forced to undergo either pair production or Compton scattering. The
captured weight either is assumed to be locally deposited or becomes a photoelectron for
electron transport or for the TTB approximation.

b.  Pairproduction: In a collision resulting in pair production [probability/(c; = 0],
either an electron-positron pair are created for further transport (or the TTB treatment) and the
photon disappears, or itis assumed that the kinetic en&@WE — 1.022 MeV of the electron-
positron pair produced is deposited as thermal energy at the time and point of collision, with
isotropic production of one photon of energy 0.511 MeV headed in one direction and another
photon of energy 0.511 MeV headed in the opposite direction. The rare singleMed22
annihilation photon is ignored. The simple physics treatment for pair production is the same as
the detailed physics treatment that is described in detail below.

c. Comptonscattering: The alternative to pair production is Compton scattering on a free
electron, with probabilityy/(c; — ,,¢). In the event of such a collision, the objective is to
determine the enerdy of the scattered photon, apd= cos8  for the artjle  of deflection
from the line of flight. This yields at once the eneW T( E- E) deposited at the point of
collision and the new direction of the scattered photon. The energy deposited at the point of
collision can then be used to make a Compton recoil electron for further transport or for the TTB
approximation.

The differential cross section for the process is given by the Klein-Nishina fdrmula

K(a, p)du = Wi%%g{%+% +u2_1}du , 2.2)

wherer, is the classical electron radi@s817938x 120130m aanda’ arethe incidentand final
photon energies in units of 0.511 Mgd = E/(mc) ,whenésthe mass of the electron and
cis the speed of light], ana’ = a/[1+a(1-p)]

The Compton scattering process is sampled exactly by Kahn's nfétreldw 1.5 MeV and by
Koblinger's methotP above 1.5 MeV as analyzed and recommended by Blomquist and
Gelbard?®

For next event estimators such as detectors and DXTRAN, the probability density for scattering
toward the detector point must be calculated:
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p(H) = ————K(a, 1) ,
0,(Z,a)

whereof(z, a) isthe total Klein-Nishina cross section obtained by integrét{agu) over all
angles for energy. This is a difficult integration, so the empirical formula of Hastthigaused:

2
c{N +¢Cyn +cCy

GT(Z,O() = nrg

r]3+ d1n2+ d,n +dj

wheren = 1 +.222037a, c1 = 1.651035, c2 = 9.340220, c3 = -8.325004, d1 = 12.501332,
d2 =-14.200407, and d3 = 1.699075. Thus,

3 2
o(uy = 19N 9Nty a2 40
> a0t g 0
Clrl +Czr] +C3

Above 100 MeV, where the Hastings fit is no longer valid, the approximation

of(Z, a) = 04(Z,a)/Z

is made so that

2. Detailed Physics Treatment

The detailed physics treatment includes coherent (Thomson) scattering and accounts for
fluorescent photons after photoelectric absorption. Form factors are used with coherent and
incoherent scattering to account for electron binding effects. Analog capture is always used, as
described below under photoelectric effect. The detailed physics treatment is used below energy
EMCPF on the PHYS:P card, and because the default value of EMCPF is 100 MeV, that means
it is almost always used by default. It is the best treatment for most applications, particularly for
high Z nuclides or deep penetration problems.

The detailed physics treatment for next event estimators such as point detectors is inadvisable,
as explained on page 2—62, unless the NOCOH=1 option is used on the PHYS:P card to turn off
coherent scattering.

a. Incoherent (Compton) scattering: To model Compton scattering it is necessary to
determine the angleé of scattering from the incident line of flight (and thus the new direction),
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the new energ¥e’ of the photon, and the recoil kinetic energy of the electett;' . The recoil
kinetic energy can be deposited locally, can be transported in Mode P E problems, or (default)

can be treated with the TTB approximation.

Incoherent scattering is assumed to have the differential cross section
o,(Z,a,p)du = 1(Zv)K(a, p)du , wherel(Z,v) is an appropriate scattering factor
modifying the Klein-Nishina cross section in Eq. (2.2).

Qualitatively, the effect di(Z,V) is to decrease the Klein-Nishina cross section (per electron)
more extremely in the forward direction, for I@wand for highZ independently. For arg,
I(Z,V) increases fromh(Z,0) = 0 tb(Z, o) = Z . The parametes the i inverse length

v = sin(8/2)/\ = ka/I—p wherek = 10°mc/(hy2) = 29.144%m *. The
maximum value ob is ., = = ka2 = 41. 2166atu = -1. The essential features {Z,v) are

indicated in Fig. 2-4.

E=fi)_-"

T{E,vifE
=
=

Figure 2-4.

For hydrogen, an exact expression for the form factor is t/sed:

(Lv) = 1-—2

%l_+1225

wheref is the inverse fine structure constdnt,137.0393and f/ /2 = 96.9014.

The Klein-Nishina formula is sampled exactly by Kahn's methbdlow 1.5 MeV and by
Koblinger's methotP above 1.5 MeV as analyzed and recommended by Blomquist and
Gelbard*® The outgoing energg'  and angleare rejected according to the form factors.

For next event estimators such as detectors and DXTRAN, the probability density for scattering
toward the detector point must be calculated:
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oo, a2 a0
1(ZG)I( V)DO(DQ]+ +p 1D

wherenrg = 2494351 anw(Z,a) andl(Z,v) are looked up in the data library.

p() = 01(71,(}()I(z,v)r<(cx,u) =

b. Coheren{Thomson}kcattering: Thomson scattering involves no energy loss, and thus
is the only photon process that cannot produce electrons for further transport and that cannot use
the TTB approximation. Only the scattering angles computed, and then the transport of the
photon continues.

The differential cross section &(Z, o, p)du = C(Z, VT(n)dy, whereC(z, \/)2is a form factor
modifying the energy-independent Thomson cross sedt{pr) = 1ry(1+ p™)du

The general effect a%(Z, v)/Z is to decrease the Thomson cross section more extremely for
backward scattering, for higk, and lowZ. This effect is opposite in these respects to the effect
of I(Z,v)/ZonK(a,u) in incoherent (Compton) scattering. For a giv&rC(Z,v)decreases from
C(Z,0) = Zto C(Z,») = 0. For exampleC(Z, v)is a rapidly decreasing function pfasu

varies from+1 to-1, and therefore the coherent cross section is peaked in the forward direction.
At high energies of the incoming photon, coherent scattering is strongly forward and can be
ignored. The parameteris the i inverse length = sin(6/2)/A = KkaJ/1—-p where

K = 10°m c/(hﬁ) = 20.144%m *. The maximum value ofis

Upax = Kou/i = 41 216@ atp = —-1. The square of the maximum value is

v = 1698.8038°. The qualitative features @f(Z,v)are shown in Fig. 2-5.

max —

LS TR

Figure 2-5.

For next event estlmators one must evaluate the probability density function
p(u) = mr (1+ U )C (Z,v)/0,(Z, a) for giveny. Hereao, (Z,a) is the integrated coherent
cross section. The value 6f (Z,v) at= Ka./1—p  must be interpolated in the original
CZ(Z,V,) tables separately stored on the cross-section library for this purpose.
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Note that at high energies, coherent scattering is virtually straight ahead with no energy loss;
thus, it appears from a transport viewpoint that no scattering took place. For a point detector to
sample this scattering, the point must lie on the original ti@ckl1) , Which is seldom the case.
Thus, photon point detector variances generally will be much greater with detailed photon
physics than with simple physics unless coherent scattering is turned off with NOCOH =1 on
the PHYS:P card, as explained on page 2—-62.

c. Photoelectrieffect: The photoelectric effect consists of the absorption of the incident
photon of energ¥, with the consequent emission of several fluorescent photons and the ejection
(or excitation) of an orbital electron of binding enery E, giving the electron a kinetic energy
of E —e. Zero, one, or two fluorescent photons are emitted. These three cases are now described.

(1) Zero photons greater than 1 keV are emitted. In this event, the cascade of
electrons that fills up the orbital vacancy left by the photoelectric ejection produces electrons and
low-energy photons (Auger effect). These particles can be followed in Mode P E problems, or
be treated with the TTB approximation, or be assumed to deposit energy locally. Because no
photons are emitted by fluorescence (some may be produced by electron transport or the TTB
model), the photon track is terminated. This photoelectric “capture” of the photon is scored like
analog capture in the summary table of the output file. Implicit capture is not possible.

(2) One fluorescent photon of energy greater than 1 keV is emitted. The photon
energyE' is the difference in incident photon eneligyess the ejected electron kinetic energy
E-e, less aresidual excitation energy thatis ultimately dissipated by further Auger processes.
This dissipation leads to additional electrons or photons of still lower energy. The ejected
electron and any Auger electrons can be transported or treated with the TTB approximation. In
general,

E'=E-(E-¢-€ =e-¢.

These primary transactions are taken to have the full fluorescent yield from all possible upper
levelse’ , but are apportioned among theay linesKa,, (L; - K);Ka,, (L, - K);KB'4,
(meanM - K); ankB, , (medh - K ).

(3) Two fluorescence photons can occur if the residual excitation  of process (2)
exceeds 1 keV. An electron of binding energy  canfill the orbit of binding enetgy , emitting
a second fluorescent photon of enefgy = ' —e" . As before, the residual exogtation is
dissipated by further Auger events and electron production that can be modeled with electron
transport in Mode P E calculations, approximated with the TTB model, or assumed to deposit
all energy locally. These secondary transitions come from all upper shells and gjoetts.

Thus the primary transitions must Ke, or Ka, to leave ark shell vacancy.

Each fluorescent photon born as discussed above is assumed to be emitted isotropically and is
transported, provided th&t E'' >1keV . The binding energies , and e’ are very nearly
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the x-ray absorption edges because theay absorption cross section takes an abrupt jump as
it becomes energetically possible to eject (or excite) the electron of enerdy first’ g'then
thene, etc. The jump can be as much as a factor of 20 (for example, K-carbon).

A photoelectric event is terminal for eleme@s 12 because the possible fluorescence energy
is below 1 keV. The event is only a single fluorescence of energy above 1 k&l fo” > 12 ,
but double fluorescence (each above 1 keV) is possiblé #d31 ZE@1 , primary lines
Ka,, Ka,, andKp; are possible and, in addition, e 37  , K, line is possible.

In all photoelectric cases where the photon track is terminated because either no fluorescent
photons are emitted or the ones emitted are below the energy cutoff, the termination is
considered to be caused by analog capture in the output file summary table (and not energy
cutoff).

d. Pair Production: This process is considered only in the field of a nucleus. The
threshold is2mc[1 + (m/ M)] 01.022 MeV, wherM is the nuclear mass andlis the mass
of the electron. There are three cases:

(1) Inthe case of electron transport (Mode P E), the electron and positron are created
and banked and the photon track terminates.

(2) ForMode P problems with the TTB approximation, both an electron and positron
are produced but not transported. Both particles can make TTB approximation photons. If the
positron is below the electron energy cutoff, then it is not created and a photon pair is created as
in case (3).

(3) For Mode P problems when positrons are not created by the TTB approximation,
the incident photon of enerdyvanishes. The kinetic energy of the created positron/electron
pair, assumed to He— 2mdé, is deposited locally at the collision point. The positron is
considered to be annihilated with an electron at the point of collision, resulting in a pair of
photons, each with the incoming photon weight, and each with an energg’ef 0.511MeV.

The first photon is emitted isotropically, and the second is emitted in the opposite direction. The
very rare single-annihilation photon of 1.022 MeV is omitted.

e. Cautionfor detectorsandcoherenscattering: The use of the detailed photon physics
treatment is not recommended for photon next event estimators (such as point detectors and ring
detectors) nor for DXTRAN, unless coherent scatter is turned off with the NOCOH = 1 option
on the PHYS:P card. Alternatively, the simple physics treatment (EMCBE1 on the
PHYS:P card) can be used. Turning off coherent scattering can improve the figure of merit (see
page 2—-108) by more than a factor of 10 for tallies with small relative errors because coherent
scattering is highly peaked in the forward direction. Consequently, coherent scattering becomes
undersampled because the photon must be traveling directly at the detector point and undergo a
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coherent scattering event. When the photon is traveling nearly in the direction of the point
detector or the chosen point on a ring detector or DXTRAN sphere, the PS@({errof the

point detector (see page 2—-85) becomes very large, causing a huge score for the event and
severely affecting the tally. Remember tp@t) is not a probability (that can be no larger than
unity); it is a probability density function (the derivative of the probability) and can approach
infinity for highly forward-peaked scattering. Thus the undersampled coherent scattering event
is characterized by many low scores to the detector when the photon trajectory is away from the
detector p(u) = smal) and a very few very large scorggl() = hugg when the trajectory is

nearly aimed at the detector. Such undersampled events cause a sudden increase in both the tally
and the variance, a sudden drop in the figure of merit, and a failure to pass the statistical checks
for the tally as described on page 2—-121.

E. Electron Interactions

The transport of electrons and other charged particles is fundamentally different from that of
neutrons and photons. The interaction of neutral particles is characterized by relatively
infrequent isolated collisions, with simple free flight between collisions. By contrast, the
transport of electrons is dominated by the long-range Coulomb force, resulting in large numbers
of small interactions. As an example, a neutron in aluminum slowing down from 0.5 MeV to
0.0625 MeV will have about 30 collisions, while a photon in the same circumstances will
experience fewer than ten. An electron accomplishing the same energy loss will undergo about
10° individual interactions. This great increase in computational complexity makes a single-
collision Monte Carlo approach to electron transport unfeasible for most situations of practical
interest.

Considerable theoretical work has been done to develop a variety of analytic and semi-analytic
multiple-scattering theories for the transport of charged particles. These theories attempt to use
the fundamental cross sections and the statistical nature of the transport process to predict
probability distributions for significant quantities, such as energy loss and angular deflection.
The most important of these theories for the algorithms in MCNP are the Goudsmit-
Saundersdff theory for angular deflections, the Lantfaiheory of energy-loss fluctuations,

and the Blunck-Leisegaienhancements of the Landau theory. These theories rely on a variety
of approximations that restrict their applicability, so that they cannot solve the entire transport
problem. In particular, it is assumed that the energy loss is small compared to the kinetic energy
of the electron.

In order to follow an electron through a significant energy loss, it is necessary to break the
electron’'s path into many steps. These steps are chosen to be long enough to encompass many
collisions (so that multiple-scattering theories are valid) but short enough that the mean energy
loss in any one step is small (so that the approximations necessary for the multiple-scattering
theories are satisfied). The energy loss and angular deflection of the electron during each of the
steps can then be sampled from probability distributions based on the appropriate multiple-
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scattering theories. This subsumption of the effects of many individual collisions into single
steps that are sampled probabilistically constitutes the “condensed history” Monte Carlo
method.

The most influential reference for the condensed history method is the 1963 paper by Martin J.
Berger’! Based on the techniques described in that work, Berger and Stephen M. Seltzer
developed the ETRAN series of electron/photon transport Cédéese codes have been
maintained and enhanced for many years at the National Bureau of Standards (now the National
Institute of Standards and Technology). The ETRAN codes are also the basis for the Integrated
TIGER Series? a system of general-purpose, application-oriented electron/photon transport
codes developed and maintained by John A. Halbleib and his collaborators at Sandia National
Laboratories in Albuquerque, New Mexico. The electron physics in MCNP is essentially that of
the Integrated TIGER Series.

1. Electron Steps and Substeps

The condensed random walk for electrons can be considered in terms of a sequence of sets of
values

(0,Ep,tg,ugro), (S,Eqty,ug,rq), (SExt,Us, ), ...
wheres,, E,, t,, u,, andr, are the total path length, energy, time, direction, and position of the
electron at the end ofsteps. On the average, the energy and path length are related by

s dE
En—l_ En = _Isn_l d_SdS y (23)

where—dE/dsis the total stopping power in energy per unit length. This quantity depends on
energy and on the material in which the electron is moving. ETRAN-based codes customarily
choose the sequence of path lengghssuch that

=k, (2.4)

for a constank. The most commonly used valuekis 278 which results in an average energy
loss per step of 8.3%.

Electron steps with (energy-dependent) path lengths, — s,.; determined by Egs. 2.3-2.4 are
calledmajor stepor energy stepsThe condensed random walk for electrons is structured in
terms of these energy steps. For example, all precalculated and tabulated data for electrons are
stored on an energy grid whose consecutive energy values obey the ratio in Eq. 2.4. In addition,
the Landau and Blunck-Leisegang theories for energy straggling are applied once per energy
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step. For a single step, the angular scattering could also be calculated with satisfactory accuracy,
since the Goudsmit-Saunderson theory is valid for arbitrary angular deflections. However, the
representation of the electron’s trajectory as the result of many small steps will be more accurate
if the angular deflections are also required to be small. Therefore, the ETRAN codes and MCNP
further break the electron steps into smaller substeps. A major step of pattsliergjtiided

into m substeps, each of path lengfm Angular deflections and the production of secondary
particles are sampled at the level of these substeps. The imegpends only on material
(average atomic numbg&j. Appropriate values fan have been determined empirically, and

range froom=2for Z<6tom=15for Z> 91

In some circumstances, it may be desirable to increase the vatuerod given material. In
particular, a very small material region may not accommodate enough substeps for an accurate
simulation of the electron’s trajectory. In such cases, the user can increase themadii of

the ESTEP option on the material card. The user can gain some insight into the seleation of
by consulting Print Table 85 in the MCNP output. Among other information, this table presents
a quantity called DRANGE as a function of energy. DRANGE is the size of an energy step in
g/cnt. Therefore, DRANGHhis the size of a substep in the same units, apdsfthe material
density in g/cr, then DRANGE/p) is the length of a substep in cm. This quantity can be
compared with the smallest dimension of a material region. A reasonable rule of thumb is that
an electron should make at least ten substeps in any material of importance to the transport
problem.

2. Condensed Random Walk

In the initiation phase of a transport calculation involving electrons, all relevant data are either
precalculated or read from the electron data file and processed. These data include the electron
energy grid, stopping powers, electron ranges, energy step ranges, substep lengths, and
probability distributions for angular deflections and the production of secondary patrticles.
Although the energy grid and electron steps are selected according to Eqgs. 2.3-2.4, energy
straggling, the analog production of bremsstrahlung, and the intervention of geometric
boundaries and the problem time cutoff will cause the electron’s energy to depart from a simple
sequencs, satisfying Eq. 2.4. Therefore, the necessary parameters for sampling the random
walk will be interpolated from the points on the energy grid.

At the beginning of each major step, the collisional energy loss rate is sampled. In the absence
of energy straggling, this will be a simple average value based on the nonradiative stopping
power described in the next section. In general, however, fluctuations in the energy loss rate will
occur. The number of substepger energy step will have been preset, either from the
empirically-determined default values, or by the user, based on geometric considerations. At
mostmsubsteps will be taken in the current major step, i. e., with the current value for the energy
loss rate. The number of substeps may be reduced if the electron's energy falls below the
boundary of the current major step, or if the electron reaches a geometric boundary. In these
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circumstances, or upon the completiomo$ubsteps, a new major step is begun, and the energy
loss rate is resampled.

Except for the energy loss and straggling calculation, the detailed simulation of the electron
history takes place in the sampling of the substeps. The Goudsmit-Saurféeénsamy is used

to sample from the distribution of angular deflections, so that the direction of the electron can
change at the end of each substep. Based on the current energy loss rate and the substep length,
the projected energy for the electron at the end of the substep is calculated. Finally, appropriate
probability distributions are sampled for the production of secondary particles. These include
electron-induced fluorescentkays, “knock-on” electrons (from electron-impact ionization),

and bremsstrahlung photons.

Note that the length of the substep ultimately derives from the total stopping power used in

Eq. 2.3, but the projected energy loss for the substep is based on the nonradiative stopping
power. The reason for this difference is that the sampling of bremsstrahlung photons is treated
as an essentially analog process. When a bremsstrahlung photon is generated during a substep,
the photon energy is subtracted from the projected electron energy at the end of the substep.
Thus the radiative energy loss is explicitly taken into account, in contrast to the collisional
(nonradiative) energy loss, which is treated probabilistically and is not correlated with the
energetics of the substep. Two biasing techniques are available to modify the sampling of
bremsstrahlung photons for subsequent transport. However, these biasing methods do not alter
the linkage between the analog bremsstrahlung energy and the energetics of the substep.

MCNP uses identical physics for the transport of electrons and positrons, but distinguishes
between them for tallying purposes, and for terminal processing. Electron and positron tracks
are subject to the usual collection of terminal conditions, including escape (entering a region of
zero importance), loss to time cutoff, loss to a variety of variance-reduction processes, and loss
to energy cutoff. The case of energy cutoff requires special processing for positrons, which will
annihilate at rest to produce two photons, each with emergy= 0.511008 MeV.

3. Stopping Power

3a. Collisional Stopping Reer

BergerP! gives the restricted electron collisional stopping power, i. e., the energy loss per unit
path length to collisions resulting in fractional energy transééess than an arbitrary maximum
valueg,, in the form

dEn _ 0 E(1+2) - 0
EUst_NZCEIn—ZZ +f (1,¢,) 6[D, (2.5)
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where

- D2 &m , 2T1+1
f (T’Em) -1- [3 Elf+:|.D7 (-[+1)2

In(1-¢,,) (2.6)

1

“®m

+ In[48m(1_8m)] + 1

Heree andg,,, represent energy transfers as fractions of the electron kinetic éhdrigythe
mean ionization potential in the same unit€ag is v/c, T is the electron kinetic energy in units
of the electron rest massjs the density effect correction (related to the polarization of the
medium);Z is the average atomic number of the meditms the atom density of the medium
in cm™3; and the coefficier is given by

C = 2”—62 , 2.7)

mv

wherem, e, andv are the rest mass, charge, and speed of the electron, respectively. The density
effect correctiord is calculated using the prescriptions of Sternheimer, Berger and Btitizer
the el03 evaluation and using the method of Sternheimer and Pdiarithe ell evaluation.

The ETRAN codes and MCNP do not make use of restricted stopping powers, but rather treat
all collisional events in an uncorrelated, probabilistic way. Thus, only the total energy loss to
collisions is needed, and Egs. 2.5-2-6 can be evaluated for the specialyalli?. The rea-

son for thel/2 is the indistinguishability of the two outgoing electrons. The electron with the
larger energy is, by definition, the primary. Therefore, only the rargbE2is of interest. With
em=1/2, Eq. 2.6 becomes

7 (1g,) = =2+ (1-In2) + = +'”2%T182 . 2.8)

On the right side of Eq. 2.5, we can express do#ndl in units of the electron rest mass. Then
E can be replaced kyon the right side of the equation. We also introduce supplementary
constants

C2 = In(21%),

C3=1-In2, (2.9)
1

C4==z+In2,
8 n

April 10, 2000 2-67



CHAPTER 2
PHYSICS

so that Eq. 2.5 becomes

_rdEg _ 2me’ B ot f <O
~Cgs0 - NZ—= VEln[r (r+2)] C2+C3- B +C4E( 10 6% (2.10)

This is the collisional energy loss rate in MeV/cm in a particular medium. In MCNP, we are
actually interested in the energy loss rate in units of MeV barns (so that different cells containing
the same material need not have the same density). Therefore, we divide Eq.N didby
multiply by the conversion factor #0barns/cr. We also use the definition of the fine structure
constant

_2me
“= e

wherehis Planck's constant, to eliminate the electronic charfgem Eq. 2.10. The resultis as
follows:

24 2
dEq _ 10%*a’h’c®, 0 1T f U1
0= 2 O 7 n[t*(c + 2)]-C2+ C3-p + 4L 5= @41
sl oymd 0 EHlD B2

This is the form actually used in MCNP to preset the collisional stopping powers at the energy
boundaries of the major energy steps.

The mean ionization potential and density effect correction depend upon the state of the
material, either gas or solid. In the fit of Sternheimer and P&iéhiks physical state of the
material also modifies the density effect calculation. In the Sternheimer, Berger and®Seltzer
treatment, the calculation of the density effect uses the conduction state of the material to
determine the contribution of the outermost conduction electron to the ionization potential. The
occupation numbers and atomic binding energies used in the calculation are from €arlson.

3b. Radiatve Stopping Pwer

The radiative stopping power is

dE 4 - 2 2
= = 1072(z+ ) (ar2)(T + m&) o)
rad
WhereCDEQ)d is the scaled electron-nucleus radiative energy-loss cross section based upon

evaluations by Berger and Seltzer for either ell and el03 (details of the numerical values of the
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el03 evaluation can be found in Ref. 57, Ref. 58, and Refj59; is a parameter to account for
the effect of electron-electron bremsstrahlung (it is unity in the ell evaluation and, in the el03

evaluation, it is based upon the work of S. Seltzer and M. B&fg&r°and can be different from
unity); a is the fine structure constani¢? is the mass energy of an electron, and the

classical electron radius. The dimensions of the radiative stopping power are the same as the
collisional stopping power.

4. Energy Straggling

Because an energy step represents the cumulative effect of many individual random collisions,
fluctuations in the energy loss rate will occur. Thus the energy loss will not be a simple average
A rather there will be a probability distributidits A) dA from which the energy losa for the

step of lengtts can be sampled. Land®studied this situation under the simplifying

assumptions that the mean energy loss for a step is small compared with the electron’s energy,
that the energy paramet&defined below is large compared with the mean excitation energy of
the medium, that the energy loss can be adequately computed from the Ritherémsi

section, and that the formal upper limit of energy loss can be extended to infinity. With these
simplifications, Landau found that the energy loss distribution can be expressed as

f(s A)dA = @(A)dA

in terms of@(A) , a universal function of a single scaled variable

_ A ZEmv2 } 2
A=z—-Inl———|+0+B -1+yD
¢ nLl_BZ)Iz o

Heremandv are the mass and speed of the electddn the density effect correctiofd,is v/c, |
is the mean excitation energy of the medium, gixlEuler’'s constanfy = 0.5772157..) .The
parameteg is defined by

2T[e4NZ
mv2

& =

S,

whereeis the charge of the electron aNdzZ is the number density of atomic electrons, and the
universal function is

_ 1 XFie pinp+ap
N = )i ® a

wherex is a positive real number specifying the line of integration.
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For purposes of samplingy(A) is negligible fox —4 |, so that this range is ignored. B rsch -
Supafi*originally tabulatedp(A) intheranged <\ <100 ,and derived for the rahgel00
the asymptotic form

1
o(A) = ,
W+ 17

in terms of the auxiliary variable, where

A =w+lIn w+y—g

Recent extensiofi$of B rsch-Supan's tabulation have provided a representation of the function
inthe range-4 < A <100 in the form of five thousand equally probable bias In MCNP, the
boundaries of these bins are saved in the aggay(mlam), wheremlam =5001. Sampling from

this tabular distribution accounts for approximately 98.96% of the cumulative probability for
@(A) . For the remaining largk-+ail of the distribution, MCNP uses the approximate form

©(A\) =w 2, which is easier to sample thaw?@ 1122, but is still quite accurate far> 100.

Blunck and Leiseganf have extended Landau’s result to include the second moment of the
expansion of the cross section. Their result can be expressed as a convolution of Landau's
distribution with a Gaussian distribution:

N2
t(s, A) = F(s, A')ex M}m'

1 4o
oo 1 27
Blunck and Westph&t provided a simple form for the variance of the Gaussian:

oay = 10eVOZ°A .

Subsequently, Chechin and Ermil8¥investigated the Landau/Blunck-Leisegang theory, and
derived an estimate for the relative error

1
2

Ece™ [1|_OE%1 + %g}

caused by the neglect of higher-order moments. Based on this work, Selezaribes and
recommends a correction to the Blunck-Westphal variance:
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_ _%w
1+ 3eg

This value for the variance of the Gaussian is used in MCNP.

Examination of the asymptotic form fgA)  shows that unrestricted samplingviif not

result in a finite mean energy loss. Therefore, a mateaiad energydependent cutof;is
imposed on the sampling af In the initiation phase of an MCNP calculation, the code makes
use of two preset arraygm(mlanc) andavim(mlanc), with mlanc = 1591. The arraglam contains
candidate values fox; in the range-4 < A . < 50000 ; the arragvim contains the corresponding
expected mean values for the sampling dfor each material and electron energy, the code uses
the known mean collisional energy lass , interpolating in this tabular function to select a
suitable value foh., which is then stored in the dynamically-allocated afitaypuring the
transport phase of the calculation, the valuécdpplicable to the current material and electron
energy is used as an upper limit, and any sampled valdgofater than the limit is rejected. In
this way, the correct mean energy loss is preserved.

5. Anaqgular Deflections

The ETRAN codes and MCNP rely on the Goudsmit-Saund&ttoeory for the probability
distribution of angular deflections. The angular deflection of the electron is sampled once per
substep according to the distribution

Fsi) = 3 H+2lexn-sG)P ()
=0

wheresis the length of the substep, = cosB is the angular deflection from the direction at the
beginning of the substep,(Y) is thel™ Legendre polynomial, ang, is

G =2mN [ 99 [1-p(w)]d
| = ! J.—l E[ - I(IJ')] I-l ’
in terms of the microscopic cross sectoho/ dQ , and the atom déheityhe medium.

For electrons with energies below 0.256 MeV, the microscopic cross section is taken from
numerical tabulations developed from the work of Rifeljor higher-energy electrons, the
microscopic cross section is approximated as a combination of th®/ otk RutherforeP

cross sections, with a screening correction. Seltggesents this “factored cross section” in the
form
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do _ 7% { (do/dQ) o J
dQ pZVz(l—P-"'Zr])Z (do/dQ)rytherfor

wheree, p, andv are the charge, momentum, and speed of the electron, respectively. The
screening correction  was originally given by Molfras

_ lpgamc Dz 2/3

= 7 fbggen 2 1113+ 376az/p) 7,

wherea is the fine structure constamt,is the rest mass of the electron, ghd v/c. MCNP now
follows the recommendation of Seltz28rand the implementation in the Integrated TIGER
Series, by using the slightly modified form

IDGmCDZ 2/3
N = 7 Hhegsn 2 [1 13+ 3.76a2/B)° /

wheret is the electron energy in units of electron rest mass. The multiplicative factor in the final
term is an empirical correction which improves the agreement at low energies between the
factored cross section and the more accurate partial-wave cross sections of Riley.

6. Bremsstrahlung

In the ell evaluation, for the sampling of bremsstrahlung photons, MCNP relies primarily on the
Bethe-Heitle?® Born-approximation results that have been used until rather retently

ETRAN. A comprehensive review of bremsstrahlung formulas and approximations relevant to
the present level of the theory in MCNP can be found in the paper of Koch and’R#@azticular
prescriptions appropriate to Monte Carlo calculations have been developed by Berger and
Seltzer/! For the ETRAN-based codes, this body of data has been converted to tables including
bremsstrahlung production probabilities, photon energy distributions, and photon angular
distributions.

In the el03 evaluation, the production cross section for bremsstrahlung photons and energy
spectra are from the evaluation by Seltzer and Betget>We summarize the salient features

of the evaluation below; more details can be found in the evaluators’ documentation. The
evaluation uses detailed calculations of the electron-nucleus bremsstrahlung cross section for
electrons with energies below 2 MeV and above 50 MeV. The evaluation below 2 MeV uses the
results of Pratt, Tseng, and collaborators, based on numerical phase-shift calcifatibisor

50 MeV and above, the analytical theory of Davies, Bethe, Maximom, and Blisamsed and

is supplemented by the Elwert Coulofilsorrection factor and the theory of the high-frequency
limit or tip region given by Jabbur and PréftScreening effects are accounted for by the use of
Hartree-Fock atomic form factof§ The values between these firmly grounded theoretical limits
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are found by a cubic-spline interpolation as described in Ref. 57 and Ref. 58. Seltzer reports
good agreement between interpolated values and those calculated by Tseng &M Psathd

10 MeV electrons in aluminum and uranium. Electron-electron bremsstrahlung is also included
in the cross section evaluation based on the theory of #fauith screening corrections derived
from Hartree-Fock incoherent scattering fact&t$he energy spectra for the bremsstrahlung
photons are provided in the evaluation. No major changes were made to the tabular angular
distributions, which are internally calculated when using the ell evaluation, except to make finer
energy bins over which the distribution is calculated.

MCNP addresses the sampling of bremsstrahlung photons at each electron substep. The tables
of production probabilities are used to determine whether a bremsstrahlung photon will be
created. In the el03 evaluation, the bremsstrahlung production is sampled according to a Poisson
distribution along the step so that none, one or more photons could be produced; the ell
evaluation allows for either none or one bremsstrahlung photon in a substep. If a photon is
produced, the new photon energy is sampled from the energy distribution tables. By default, the
angular deflection of the photon from the direction of the electron is also sampled from the
tabular data. The direction of the electron is unaffected by the generation of the photon, because
the angular deflection of the electron is controlled by the multiple scattering theory. However,
the energy of the electron at the end of the substep is reduced by the energy of the sampled
photon, because the treatment of electron energy loss, with or without straggling, is based only
on nonradiative processes.

There is an alternative to the use of tabular data for the angular distribution of bremsstrahlung
photons. If the fourth entry on the PHYS:E card is 1, then the simple, material-independent
probability distribution

2
——1—:—[3’——2du , (2.12)
2(1-Bu)

wherep = cosB and3 = v/c, will be used to sample for the angle of the photon relative to the
direction of the electron according to the formula

p(p)du =

_ 28-1-B
2ep-1-Pp

whereg is a random number. This sampling method is of interest only in the context of detectors
and DXTRAN spheres. A set of source contribution probabilgg consistent with the tabular

data is not available. Therefore, detector and DXTRAN source contributions are made using
Eqg. 2.12. Specifying that the generation of bremsstrahlung photons rely on Eq. 2.12 allows the
user to force the actual transport to be consistent with the source contributions to detectors and
DXTRAN.

H
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7. K-shell electron impact ionization and Auger transitions

The el03 evaluation does not change the K-shell impact ionization calculation (based upon
ITS1.0) except for how the emission of relaxation photons is treated; the el03 evaluation model
has been modified to be consistent with the photo-ionization relaxation model. In the ell
evaluation, a K-shell impact ionization event generated a photon with the average K-shell
energy. The el03 evaluation generates photons with energies given by Everett and Gashwell.
Both el03 and ell treatments only take into account the highest Z component of a material. Thus
inclusion of trace high Z impurities could mask K-shell impact ionization from other dominant
components.

Auger transitions are handled the same in the el03 and ell evaluations. If an atom has undergone
an ionizing transition and can undergo a relaxation, if it does not emit a photon it will emit an
Auger electron. The difference between ell and eI03 is the energy with which an Auger electron
is emitted, given by = E_ for ell or e03, respectively. The ell

e Ko i
value is that of the highest energy Auger electron while the el03 value is the energy of the most
probable Auger electron. It should be noted that both models are somewhat crude.

8. Knock-On Electrons

The Mgller cross sectiShfor scattering of an electron by an electron is

do _ C U1 1 ,gtvf_2t+1 1 O
E

=Ly _ 0. (2.13)
&2 (1-g)? T+10 (412 e(l-g)7

where[], T, E, andC have the same meanings as in Eqgs. 2.5-2.7. When calculating stopping
powers, one is interested in all possible energy transfers. However, for the sampling of
transportable secondary particles, one wants the probability of energy transfers greater than
someg, representing an energy cutoff, below which secondary particles will not be followed.
This probability can be written

1/2do
o(g;) = J’E Eds

The reason for the upper limit df2 is the same as in the discussion of Eq. 2.8. Explicit
integration of Eq. 2.13 leads to

o(ey) =
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Then the normalized probability distribution for the generation of secondary electrons with
€ > g.is given by

1 do

(e, g;)de = m&

(2.14)

At each electron substep, MCNP us¥s.) to determine randomly whether knock-on electrons

will be generated. If so, the distribution of Eq. 2.14 is used to sample the energy of each
secondary electron. Once an energy has been sampled, the angle between the primary direction
and the direction of the newly generated secondary particle is determined by momentum
conservation. This angular deflection is used for the subsequent transport of the secondary
electron. However, neither the energy nor the direction of the primary electron is altered by the
sampling of the secondary particle. On the average, both the energy loss and the angular
deflection of the primary electron have been taken into account by the multiple scattering
theories.

9. Multigroup BoltzmanrFokkerPlanck Electron Transport

The electron physics described above can be implemented into a multigroup form using a hybrid
multigroup/continuous-energy method for solving the Boltzm&okker-Planck equation as
described by Morel? The multigroup formalism for performing charged charged particle
transport was pioneered by Morel and Loretfder use in deterministic transport codes. With

a first order treatment for the continuous slowing down approximation (CSDA) operator, this
formalism is equally applicable to a standard Monte Carlo multigroup transport code as
discussed by Slodif.Unfortunately, a first order treatment is not adequate for many
applications. Morel, et.al. have addressed this difficulty by developing a hybrid multigroup/
continuousenergy algorithm for charged particles that retains the standard multigroup treatment
for large-angle scattering, but treats exactly the CSDA operator. As with standard multigroup
algorithms, adjoint calculations are performed readily with the hybrid scheme.

The process for performing an MCNP/MGBFP calculation for electron/photon transport
problems involves executing three codes. First the CEPRle is used to generate coupled
electror-photon multigroup cross sections. Next the CRSRD code casts these cross sections into
a form suitable for use in MCNP by adjusting the discrete ordinate moments into a Radau
guadrature form that can be used by a Monte Carlo code. CRSRD also generates a set of
multigroup response functions for dose or charge deposition that can be used for response
estimates for a forward calculation or for sources in an adjoint calculation. Finally, MCNP is
executed using these adjusted multigroup cross sections. Some applications of this capability for
electron/photon transport have been presented in Ref. 83.
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V. TALLIES

MCNP provides seven standard neutron tallies, six standard photon tallies, and four standard
electron tallies. These basic tallies can be modified by the user in many ways. All tallies are
normalized to be per starting particle except in KCODE criticality problems.

Tally Mnemonic Description
FI:N or F1:P or F1:E  Surface current
F2:N  or F2:P or F2:E  Surface flux
F4:N or F4:P or F4:E  Track length estimate of cell flux
F5a:N or Fb5aP Flux at a point or ring detector
F6:N  or F6:P or F6:N,P Track length estimate of energy deposition
F7:N Track length estimate of fission energy deposition
F8N or F8:P or F8:E  Pulse height tally

or F8:PE

The above seven tally categories represent the basic MCNP tally types. To have many tallies of
a given type, add multiples of 10 to the tally number. For example, F1, F11FB81, F991

are all type F1 tallies. Particle type is specified by appending a colon and the particle designator.
For example, F11:N and F96:N are neutron tallies and F2:P and F25:P are photon tallies. F6
tallies can be for both neutrons and photei®d6:N,P. F8 tallies are for both photons and
electrons: F8:P, F8:E, and F8:P,E are all identical. F8:N is also allowed, though not advised,
because MCNP neutron transport does not currently sample joint collision exit densities in an
analog way.

Thought should be given to selecting a tally and to comparing one tally with another. For
example, if the flux is varying aBR? in a cell, an average flux in the cell determined by the F4
tally will be higher than the flux at a point in the center of the cell determined by a detector. This
same consideration applies to the average flux provided by DXTRAN spheres (see page 2—-150).

Standard summary information that gives the user a better insight into the physics of the problem
and the adequacy of the Monte Carlo simulation includes a complete accounting of the creation
and loss of all tracks and their energy; the number of tracks entering and reentering a cell plus
the track population in the cell; the number of collisions in a cell; the average weight, mean free
path, and energy of tracks in a cell; the activity of each nuclide in a cell; and a complete weight
balance for each cell.
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The quantities actually scored in MCNP before the final normalization per starting particle are
presented in Table 2.1. Note that adding an astdrisk) (changes the units and multiplies the
tally as indicated in the last column of Table 2.1. For an F8 pulse height tally the asterisk changes
the tally from deposition of pulses to an energy deposition tally. Table 2.1 also defines much of
the notation used in the remainder of this section.

Extensive statistical analysis of tally convergence also is applied to one bin of each tally. Ten
statistical checks are made, including the variance of the variance and the Pareto slope of the
tally density function. These are described in detail starting on page 2—-99.

Tally
F1
F2
F4
F5
F6
F7
F8

TABLE 2.1:
Tally Quantities Scored
Fn Fn (Fn [Fn
Quantity Units Multiplier Units
W E MeV
W/(|Ju| DA) 1/cn? E MeV/cn?
WOT,/V 1/cn? E MeV/cn?
W Op(u) OexpEA)/(2m RP) 1/cn? E MeV/cn?
WUOT, Do(E) OH(E) Opym MeV/gm 1.60219E22 jerks/gm
W OT, o (E)*Q Op,/m MeV/gm 1.60219E22 jerks/gm
W; put in binE OW/W4 pulses E MeV

particle weight

source weight

particle energy (MeV)

absolute value of cosine of angle between surface normal and particle trajectory.
If |u| <.1, set|u|=.05.

surface area (cfp
track length (cm¥ transit timellvelocity

volume (cm)

probability density functioni = cosine of angle between particle trajectory and
detector

total mean free path to detector

distance to detector (cm)

microscopic total cross section (barns)

heating number (MeV/collision)

atom density (atoms/barn-cm)

cell mass (gm)
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o; (E) = microscopic fission cross section (barns)
Q fission heating Q-value (MeV)

The following MCNP definitions of current and flux come from reactor theory but are related to
similar quantities in radiative transfer theory. The MCNP particle angular flux multiplied by the
particle energy is the same as the intensity in radiative transfer theory. The MCNP patrticle total
flux at energye multiplied by the particle energy equals the integrated energy density times the
speed of light in radiative transfer theory. The MCNP particle current multiplied by the particle
energy is analogous to the radiative flux crossing an area in radiative transfer theory. The MCNP
particle current usdg| in the definition, whereas the radiative transfer flux psiesits

definition. MCNP current is neither net nor positive nor negative current; it is the number of
particles crossing a surface in a particular direction. The MCNP patrticle fluence multiplied by
the particle energy is the same as the fluence in radiative transfer theory.

A.  Surface Current Tally

The F1 surface current tally estimates the following quantity:
F1= J(F,E, t, u)dE dt du dA
[uf J 2 B L dE dtdd

OF1 = ECD(7, E, t, n)dE dt du dA
.[A.[pIt .IE ( u) a
This tally is the number of particles (quantity of energy#et) crossing a surface. The scalar
current is related to the flux d£?, E,t,n) = Iuldb(?, E,t)A . The range of integration over
area, energy, time, and andgi,E,tu) can be controlled by FS, E, T, and C cards, respectively.

The FT card can be used to change the vector relative to whiglealculated (FRV option) or
to segregate electron current tallies by charge (ELC option).

B. Flux Tallies

The F2, F4 and F5 flux tallies are estimates of

_ dA
R ANALERL

dA

Fo= [ ). EC (7, E, t)dE dt ~
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_ dv
= J’VJ’tJ'EdJ(?, E, )dE dt 7

dv
IV.U ECp(7, E, t)dE dt 57

= J’tJ’ECD(?, E, t)dE dt

Fs = [ [ E®(r,E OdEdt

The range of integration over energy and time is controlled by E and T cards. The F2 surface flux
and F4 cell flux tallies are discussed below. The F5 detector flux tally, a major topic, is discussed
on page 2-85.

The units of the flux tally are the units of the source. If the source has units of particles per unit
time, the tally is also particles per unit time. When the source has units of particles, this tally
represents a fluence tally. A steady-state flux solution can be obtained by having a source with
units of particles per unit time and integrating over all time (that is, omitting the Tn card). The
flux can be obtained from the fluence tally for a time-dependent source by dividing the tally by
the time bin width. These tallies can all be made per unit energy by dividing by the energy bin
width.

1. Track Length Estimate of Cell Flux (F4)

The definition of particle flux i®(f, E,t) = vN(t, E, t) , whexe= particle velocity and
N = particle density = particle weight/unit volume. Roughly speaking, the time integrated flux is

[ ). ®(7, E, t)dE dt— =WvVV=WT/V

More precisely, letis= vdt Then the time-integrated flux is

dVD \/

d
.[VIEI %p(? E. t)dt dE T IIEI N(7, E, t)dsdE T7
BecauseN(?, E, t)ds is a track length density, MCNP estimates this integral by summing
WT,/V for all particle tracks in the cell, time range, and energy range. Because of the track length
termT, in the numerator, this tally is known as a track length estimate of the flux. It is generally
quite reliable because there are frequently many tracks in a cell (compared to the number of
collisions), leading to many contributions to this tally.
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2. Surface Flux (F2)

The surface flux is a surface estimator but can be thought of as the limiting case of the cell flux
or track length estimator when the cell becomes infinitely thin as illustrated in Fig. 2-6.

/
o =5
/
/
/
Figure 2-6.
F2 = limWT/V
6 d O

(Wd/[cost])/ (A3) = W/ (AU

As the cell thicknesd approaches zero, the volume approad®eand the track length
approached/|u|, wherep = cosB , the angle between the surface normal and the particle
trajectory. This definition of flux also follows directly from the relation between flux and current,
J(¥,E, t,n) = [Wd(F,E, t)A. MCNP setd| = .05when|u| < .1 The F2 tally is essential for
stochastic calculation of surface areas when the normal analytic procedure fails.

C. Track Length Cell Energy Deposition Tallies

The F6 and F7 cell heating and energy deposition tallies are the following track length estimates

dVv
Fe.7 = pa/ng'VItIEH(E)GD(?,E,t)dE dt<;
where
Pa = atom density (atoms/barn-cm)
Py = gram density (grams/cin
H(E) =heating response (summed over nuclides in a material)

The units of the heating tally are MeV/gm. An aster{8K; ;) changes the units to jerks/gm (1
MeV = 1.60219E-22 jerks). The asterisk causesietally to be modified by a constant rather
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than by energy as in other tallies. Note that the heating tallies are merely flux tallies (F4)
multiplied by an energy-dependent multiplier (FM card).

Energy deposition for photons and electrons can be computed witR8lelly, which is a
surface estimator rather than a track length estimator. See page 2—-83 .

The F7 tally includes the gamma heating because the photons are deposited locally. The F6 tally
deposits the photons elsewhere, so it does not include gamma heating. Thus for fissionable
materials, the F7 result often will be greater than the F6 result even though F7 includes only
fission and F6 includes all reactions. The true heating is found by summing the neutron and
photon F6 tallies in a coupled neutron/photon calculation. In a neutron-only problem, F6 will
give the right heating of light materials onlyaif photons escape the geometry. F7 will give

about the right heating of fissionable materials only if no photons come from elsewhere, all
fission photons are immediately captured, and nonfission reactions can be ignored. The F7 tally
cannot be used for photons. Examples of combining the neutron and photon F6 tallies are F6:N,P
and F516:P,N

The heating respons$§(E) has different meanings, depending upon context as follows:

1. F6 Neutrons
H(E) = o1 (E) HayyfE), where the heating number is

Havg(E) = E_Z pi(E)[Eoug(E)_Qi +Eyi(E)] ,

and

ot = total neutron cross section,

E = incident neutron energy,
pi(E) = probability of reaction,

Eout = average exiting neutron energy for reaction
Q = Q-value of reaction
Ey, = average energy of exiting gammas for readtion

2. F6 Photons
H(E) = o1(E)HaE), where the heating number is

3

Havg(E) = z pi(E)uE_EOUt)
i=1
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i = 1incoherent (Compton) scattering with form factors
i = 2 pair productionE,; = 1.022016= .’

i =3 photoelectric.
All energy transferred to electrons is assumed to be deposited locally.

3. F7 Neutrons
H(E) = 0¢(E)Q ,

where

o¢(E) = total fission cross section and
Q = fission Q-value (MeV).

The Q-values as tabulated represent the total prompt energy release per fission and are printed
in optional PRINT TABLE 98. The total fission cross section is (n,f) + (n,nf) +

4. F7 Photons
H(E) is undefined because photofission is not included in MCNP.

5. Equivalence of F4, F6, and F7 Tallies

The F6 and F7 heating tallies are special cases of the F4 track length estimate of cell flux with
energy-dependent multipliers. The following F4 and FM4 combinations give exactly the same
results as the F6 and F7 tallies. In this example, material 9 in cef®Riswith an atom density

(P of .02 atoms/barn-cm and a gram dengfy 6f 7.80612 g/crhfor an atom/gram ratio of
.0025621.

F4:N 1
FM4  .0025621 9 1 4 givesthesameresultas F6:N1

F14:N 1
FM14 .0025621 9 -6 8 givesthesameresultas F17:N1

F24:P 1
FM24 .0025621 9 5 6 givesthesameresultas F26:P1

For the photon results to be identical, both electron transport and the thick target bremsstrahlung
approximation must be turned off by PHYS:P | 1. In the F6 tally, if a photon produces an electron
that produces a photon, the second photon is not counted again. It is already tallied in the first
photon heating. In the F4 tally, the second photon track is counted, so the F4 tally will slightly
overpredict the tally.
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The photon heating tally also can be checked againsifBenergy deposition tally (divided by
cell mass to give answers in MeV per gram). Results will not be identical because the tallies are
totally independent and use different estimators.

The FM card can be used to make the surface flux tally (F2) and point and ring detector tallies
(F5) calculate heating as well.

D. Pulse Height Tallies

The pulse height tally provides the energy distribution of pulses created in a cell that models a
physical detector. It also can provide the energy deposition in a cell. Although the entries on the
F8 card are cells, this is not a track length cell tally. F8 tallies are made at source points and at
surface crossings.

The pulse height tally is analogous to a physical detector. The F8 energy bins correspond to the
total energy deposited in a detector in the specified channels by each physical particle. All the
other MCNP tallies record the energy of a scoring track in the energy bin.

In an experimental configuration, suppose a source emits 100 photons at 10 MeV, and ten of
these get to the detector cell. Further, suppose that the first photon (and any of its progeny created
in the cell) deposits 1 keV in the detector before escaping, the second deposits 2 keV, and so on
up to the tenth photon which deposits 10 keV. Then the pulse height measurement at the detector
would be one pulse in the 1 keV energy bin, 1 pulse in the 2 keV energy bin, and soonupto 1
pulse in the 10 keV bin.

In the analogous MCNP pulse height tally, the source cell is credited with the energy times the
weight of the source particle. When a particle crosses a surface, the energy times the weight of
the particle is subtracted from the account of the cell that it is leaving and is added to the account
of the cell that it is entering. The energy is the kinetic energy of the particle plus

2rrbc2 =1.022016f the particle is a positron. At the end of the history, the account in each tally
cellis divided by the source weight. The resulting energy determines which energy bin the score
is put in. The value of the score is the source weight for an F8 tally and the source weight times
the energy in the account fof &8 tally. The value of the score is zero if no track entered the

cell during the history.

The pulse height tally is an inherently analog process. Therefore, it does not work well with
neutrons, which are inherently non analog, and it does not work at all with most variance
reduction schemes. The pulse height tally depends on sampling the joint density of all particles
exiting a collision event. MCNP does not currently sample this joint density for neutron
collisions. Thus neutron F8 tallies must be done withreme caution when more than one
neutron can exit a collision. Suppose in the above example, the photon that deposited 10 keV in
the detector cell underwent afdr-1 split. Then if only one of the split halves entered the cell,
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the tally would be incorrectly put in the 5 keV bin rather than the 10 keV bin. Or if the particle
survived a Russian roulette event, its weight would be double and the score would be put into
the 20 keV bin. Similar scenarios can be given for other variance reduction methods. The MCNP
pulse height tally will not work with any variance reduction other than source biasing. It doesn't
work well with neutrons even without variance reduction because the MCNP neutron physics is
nonanalog (in the joint density sampling), particularly in the way that multiple neutrons exiting

a collision are totally uncorrelated and don't even conserve energy except in an average sense
over many neutron histories.

Another aspect of the pulse height tally that is different from other MCNP tallies is that F8:P,
F8:E and F8:P,E are all equivalent. All the energy from both photons and electrons, if present,
will be deposited in the cell, no matter which tally is specified.

When the pulse height tally is used with energy bins, care must be taken because of negative
scores from nonanalog processes and zero scores caused by particles passing through the pulse
height cell without depositing energy. In some codes, like the Integrated Tiger Series, these
events cause large contributions to the lowest energy bin pulse height score. In other codes no
contribution is made. MCNP compromises by counting these events in a zero bin and an epsilon
bin so that these scores can be segregated out. It is recommended that your energy binning for
an F8 tally be something like

E8 0 1 E-5 E1 E2 E3 E4 E5 -

Knock-on electrons in MCNP are nonanalog in that the energy loss is included in the multiple
scattering energy loss rate rather than subtracted out at each-én@slent. Thus knoelons

can cause negative energy pulse height scores. These scores will be caught in the 0 energy bin.
If they are a large fraction of the total F8 tally, then the tally is invalid because of nonanalog
events. Another situation is differentiating zero contributions from particles not entering the cell
and patrticles entering the cell but not depositing any energy. These are differentiated in MCNP
by causing an arbitrary 1.E-12 energy loss for particles just passing through the cell. These will
appear in the 0-epsilon bin.

When the[F8 energy deposition tally is used and no energy bins are specified, variance
reduction of all kinds is allowed. The analog requirement to put a score in the proper energy bin

is removed in this special casel#18 withno enegy binning. If the tally had energy bins, the

total energy deposition is correct even though the tallies in the energy bins are wrong. When
Russian roulette is played at a surface bounding a pulse height tally, the variance can become
large because the roulette is played after the energy-times-weight entering the cell is recorded.
Particles terminated by roulette deposit all their energy in the cell. Particles surviving the roulette
have increased weight that can now record more energy-times-weight leaving the cell than
entered. On average, the total energy deposition is correct, but the negative and positive scores
cause an unbounded variance. Therefore, do not play roulette at pulse height cell boundaries.
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E. Flux at a Detector

Flux can be estimated at a point with either point or ring detector next-event estimators.
Detectors can yield anomalous statistics and must be used with caution. Detectors also have
special variance reduction features, such as a highly advantageous DD card Russian roulette
game. Whenever a user-supplied source is specified, a user-supplied source angle probability
density function must be provided also.

1. Point Detector

A point detector is a deterministic estimate (from the current event point) of the flux at a point
in space. Contributions to the point detector tally are made at source and collision events
throughout the random walk. Suppogéu, ¢$)dQ is the probability of the particle’s scattering
or being born into the solid angQ  about the directigngd) ,Where isthe azimuthal angle
andu is the cosine of the angle between the incident particle direction and the direction from the
collision point to the detector. Ris the distance to the detector from the collision or source
point, then

—[ Z(s)ds
p(u, $)dQ [k !

yields the probability of scattering intdQ  aboiyt, )  and arriving at the detector point with
no further collisions. The attenuation of a beam of monoenergetic particles passing through a
material medium is given bgxp[— Zt(s)ds] whesgs measured along the direction from the
collision or source point to the detector ane) is the macroscopic total cross sectios. dft

dAis an element of area normal to the scattered line of flight to the dete€or d A/ R and
therefore

—[ Z(s)ds
dA
P(H, ¢)?e Io

is the expression giving the probability of scattering toward the detector and passing through the
element of aredA normal to the line of flight to the detector. Because the flux is by definition
the number of particles passing through a unit area normal to the scattered direction, the general
expression for the contribution to the flux is given by

-| Z(s)d
p(y, ) Jo=
RZ

In all the MCNP scattering distributions and in the standard sources, we assume azimuthal
symmetry. Therefore,
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p(k) = [ P(H, )k
and¢ is sampled uniformly qi@,2m). That is, p(4, ¢) = p(u)/2m .

If p(u, ¢) = p(n)/2mis substituted in the expression for the flux, the expression used in
MCNP is arrived at:

O(F,E, t, 1) = Wp(p)e/(2nR?)

when

W = particle weight;

>
I

I(F;Zt(s)ds = total number of mean free paths integrated over the trajectory

from the source or collision point to the detector;

R = distance from source or collision event to detector; and

p(u)= value of probability density function gt the cosine of the angle between the
particle trajectory and the direction to the detector.

A point detector is known as a “next-event estimator” because it is a tally of the flux at a point
if the next event is a trajectory without further collision directly to the point detector.

A contribution to the point detector is made at every source or collision evere: Tieem

accounts for attenuation between the present event and the detector palf@rilRfeterm

accounts for the solid angle effect. Ti(g) term accounts for the probability of scattering

toward the detector instead of the direction selected in the random walk. For an isotropic source
or scatterp() = 0.5and the solid angle terms reduce to the expeldtedR?. (Note thap(i)

can be larger than unity, because it is the value of a density function and not a probability.) Each
contribution to the detector can be thought of as the transport of a pseudoparticle to the detector.

TheR? term in the denominator of the point detector causes a singularity that makes the
theoretical variance of this estimator infinite. That is, if a source or collision event occurs near
the detector poinRapproaches zero and the flux approaches infinity. The technique is still valid
and unbiased, but convergence is slower and often impractical. If the detector is not in a source
or scattering medium, a source or collision close to the detector is impossible. For problems
where there are many scattering events near the detector, a cell or surface estimator should be
used instead of a point detector tally. If there are so few scattering events near the detector that
cell and surface tallies are impossible, a point detector can still be used with a specified average
flux region close to the detector. This region is defined by a fictitious sphere ofRgdius
surrounding the point detectdt, can be specified either in centimeters or in mean free paths. If

R, is specified in centimeters andRf< R,, the point detector estimation insi&gis assumed to

be the average flux uniformly distributed in volume.
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CD(R< R)) = ﬂ/
IdV

Jﬁ“e(_z‘r)4nr2dr
= Wp(u)

4 3
:—%T[RO

-2 R,
_ Wp(p)(l-e )
2_.3

If £, =0, the detector is not in a scattering medium, no collision can occur, and

Wp(R)R,
2.3
éT[RO

®(R<R,,%=0) =

If the fictitious sphere radius is specified in mean free pgths A §trelr; R, and

_}\O 2
o<y = WHRA-e T

2 .3
3o

The choice oR, may require some experimentation. For a detector in a void region or a region
with very few collisions (such as airfR, can be set to zero. For a typical problem, setigdo

a mean free path or some fraction thereof is usually adequRlgs lin centimeters, it should
correspond to the mean free path for some average energy in the sphere. Be certain when
definingR, that the sphere it defines does not encompass more than one material unless you
understand the consequences. This is especially true when détyimtgrms of mean free path
becausdr, becomes a function of energy and can vary widely. In particuRy,isf defined in

terms of mean free paths and if a detector is on a surface that bounds a void on one side and a
material on the other, the contribution to the detector from the direction of the void will be zero
even though the importance of the void is nonzero. The reason is simply that the volume of the
artificial sphere is infinite in a void. Contributions to the detector from the other direction (that
is, across the material) will be accounted for.

Detectors differing only iR, are coincident detectors (see page 2—-94), and there is little cost
incurred by experimenting with several detectors that differ onig oy a single problem.
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2. Ring Detector

A ring detecto? tally is a point detector tally in which the point detector location is not fixed

but rather sampled from some location on a ring. Most of the previous section on point detectors
applies to ring detectors as well. In MCNP three ring detector tallies FX, FY, and FZ correspond

to rings located rotationally symmetric about xhg andz coordinate axes. A ring detector

usually enhances the efficiency of point detectors for problems that are rotationally symmetric
about a coordinate axis. Ring detectors also can be used for problems where the user is interested
in the average flux at a point on a ring about a coordinate axis.

Although the ring detector is based on the point detector thatHB&8 singularity and an
unbounded variance, the ring detector has a finite variance and @ffy,g singularity, where
Ryin is the minimum distance between the contributing point and the detect8? ring.

In a cylindrically symmetric system, the flux is constant on a ring about the axis of symmetry.
Hence, one can sample uniformly for positions on the ring to determine the flux at any point on
the ring. The ring detector efficiency is improved by biasing the selection of point detector
locations to favor those near the contributing collision or source point. This bias results in the
same total number of detector contributions, but the large contributions are sampled more
frequently, reducing the relative error.

For isotropic scattering in the lab system, experience has shown that a good biasing function is
proportional toe PR™2, whereP is the number of mean free paths @i the distance from the
collision point to the detector point. For most practical applications, using a biasing function
involving P presents prohibitive computational complexity except for homogeneous medium
problems. For air transport problems, a biasing function resemélitigas been used with good
results. A biasing function was desired that would be applicable to problems involving dissimilar
scattering media and would be effective in reducing variance. The fuitioneets these
requirements.

In Fig. 2-7, consider a collision poink(y,,Z,) at a distanc® from a point detector location

(x,y,2. The point &,y,? is to be selected from points on a ring of radidbat is symmetric about
the y-axis in this case.
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(x,y,2)

(XQ! yov Zo)

\4
<

Figure 2-7.

To sample a posiztiorx(y,z) on the ring with d/R? bias, we pickd from the density function
p(¢) = C/(21R"), whereC is a normalization constant. To pipk  fromip) ,debe a
random number on the unit interval. Then

_ C o dop
&= ZTJ—H R2
_Cp do’
2TJ-"<x0—rcosnt>'>2+(yc,—y)2+(zo—rsincb')2
o dop’

~ 2r_n a+ bcosp’ + csing’

-1 O N
:ltanl 1[(a—b)tan9+c}m+l :
o HC 2 52

where

a = r2+xc2)+(y—yo)2+z§
b = -2rx,

c = -2rz

C = (@-p-c)2
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The above expression is validaf > b? + ¢, which is true except for collisions exactly on the
ring.

Solving for taniI ,
¢ 1 0 |: l_Di| U]
tan—2 = = [Ctan n%_zD —Cc[] .

Lettingt = tan¢/2,

then X = rcos¢ = r(l—tz)/(1+t2)
y (fixed)

rsing = 2rt/(1+t9).

N <
I I

For ring detectors, th&/R? biasing has been supplemented when it is weak to include a biasing
based on angle to select the point on the ring. This angle is in the plane of the ring and is relative
to the shortest line from the collision point to the detector ring. The angle that would most likely
be selected would pick the same point on the ring as a straight line through the axis of the
problem, the collision point, and the ring. The angle least likely to be picked would choose the
point on the opposite side of the ring. This approach will thus make scores with smaller
attenuations more often. This supplemental biasing is achieved by requiring that

2 2.1/2 .
a<3/2(b™+c") in the above equation.

If the radius of the ring is very large compared to the dimensions of the scattering media (such
that the detector sees essentially a point source in a vacuum), the ring detector is still more
efficient than a point detector. The reason for this unexpected behavior is that the individual
scores to the ring detector for a specific history have a mean closer to the true mean than to the
regular point detector contributions. That is, the point detector contributions from one history
will tend to cluster about the wrong mean because the history will not have collisions uniformly
in volume throughout the problem, whereas the ring detector will sample many paths through
the problem geometry to get to different points on the ring.

3. General Considerations of Point Detector Estimators

a. Pseudoparticles and detector reliability: Point and ring detectors are Monte Carlo
methods wherein the simulation of particle transport from one place to another is
deterministically short-circuited. Transport from the source or collision point to the detector is
replaced by a deterministic estimate of the potential contribution to the detector. This transport
between the source or collision point and the detector can be thought of as being via
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“pseudoparticles.” Pseudoparticles undergo no further collisions. These particles do not reduce
the weight or otherwise affect the random walk of the particles that produced them. They are
merely estimates of a potential contribution. The only resemblance to Monte Carlo particles is
that the quantity they estimate requires an attenuation term that must be summed over the
trajectory from the source or collision to the detector. Thus most of the machinery for
transporting particles can also be used for the pseudoparticles. No records (for example, tracks
entering) are kept about pseudoparticle passage.

Because detectors rely on pseudoparticles rather than particle simulation by random walk, they
should be considered only as a very useful last resort. Detectors are unbiased estimators, but their
use can be tricky, misleading, and occasionally unreliable. Consider the problem illustrated in
Fig. 2-8.

Scattering

regi on
@ — - — e —— - - - ()
Monoener geti c Det ect or
i sotropi C source
Figure 2-8.

The monoenergetic isotropic point source always will make the same contribution to the point
detector, so the variance of that contribution will be zero. If no particles have yet collided in the
scattering region, the detector tally will be converged to the source contribution, which is wrong
and misleading. But as soon as a patrticle collides in the scattering region, the detector tally and
its variance will jump. Then the detector tally and variance will steadily decrease until the next
particle collides in the scattering region, at which time there will be another jump.

These jumps in the detector score and variance are characteristic of undersampling important
regions. Next event estimators are prone to undersampling as already described on page 2—62
for thep(p) term of photon coherent scattering. The jump discussed here is from the sudden
change in th& and possibly\ terms. Jumps in the tally caused by undersampling can be
eliminated only by better sampling of the undersampled scattering region that caused them.

Biasing Monte Carlo particles toward the tally region would cause the scattering region to be
sampled better, thus eliminating the jump problem. It is recommended that detectors be used
with caution and with a complete understanding of the nature of next event estimators. When
detectors are used, the tally fluctuation charts printed in the output file should be examined
closely to see the degree of the fluctuations. Also the detector diagnostic print tables should be
examined to see if any one pseudoparticle trajectory made an unusually large contribution to the
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tally. Detector results should be viewed suspiciously if the relative error is greater than 5%.
Close attention should be paid to the tally statistical analysis and the ten statistical checks
described on page 2-121.

b. Detectors and reflecting, white or periodic agds: Detectors used with reflecting,
white, or periodic surfaces give wrong answers because pseudoparticles travel only in straight
lines. Consider Fig. 2-9, with a point detector and eight source cells. The imaginary cells and
point detector are also shown on the other side of the mirror. The solid line shows the source
contribution from the indicated cell. MCNP does not allow for the dashed-line contribution on
the other side of the reflecting surface. The result is that contributions to the detector will always
be from the solid path instead of from a mixture of solid and dashed contributions. This same
situation occurs at every collision. Therefore, the detector tally will be lower (with the same
starting weight) than the correct answer and should not be used with reflecting, white, or periodic
surfaces. The effect is even worse for problems with multiple reflecting, white or periodic

surfaces.
S ,,T Det ect or
i5s COO0
OO000

Source cells

oo

Refl ecti ng pl ane —»

Figure 2-9.

c. Variance reduction schemes for detectors: Pseudoparticles of point detectors are not
subject to the variance reduction schemes applied to particles of the random walk. They do not
split according to importances, weight windows, etc., although they are terminated by entering
zero importance cells. However, two Russian roulette games are available specifically for
detector pseudoparticles.

The PD card can be used to specify the pseudoparticle generation probability for each cell. The
entry for each cellisp; whereO < p; <1 . Pseudoparticles are created with probaipjland
weight1/p. If p; = 1, which is the default, every source or collision event produces a
pseudoparticle. Ip; = 0, no pseudoparticle is produced. Settmg 0 in a cell that can actually
contribute to a detector erroneously biases the detector tally by eliminating such contributions.
Thusp; = 0 should be used only if the true probability of scoring is zero or if the score from cell

I is unwanted for some legitimate reason such as problem diagnostics. Fractional eptries of
should be used with caution because the PD card applies equally to all pseudoparticles. The DD
card can be used to Russian roulette just the unimportant pseudoparticles. However, the DD card
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roulette game often requires particles to travel some distance along their trajectory before being
killed. When cells are many mean free paths from the detector, the PD card may be preferable.

The DD card controls both the detector diagnostic printing and a Russian roulette game played
on pseudoparticles in transit to detectors. The Russian roulette game is governed by the input
parametek that controls a comparison weight internal to MCNP, such that

w, = —kifk<O0;

w, = 0ifk=0

W, = 0ifk>0andN <200;

w, = (k/N)Z¢; if k>0andN >20Q

where N=number of histories run so far,
I=number of pseudoparticles started so far,

o; =Wp(L)e M (21R?),

I=contribution of thaé™ pseudoparticle to the detector tally.

When each pseudoparticle is generat®dy(1), andR are already known before the expensive
tracking process is undertaken to determiné Wp(p)/(2niR%) < w,, the pseudoparticle
contribution to the detectdy;  will be less than the comparison weight. Playing Russian roulette
on all pseudoparticles with; < w,avoids the expensive tracking of unimportant
pseudoparticles. Most are never started. Some are started but are rouletted as basn as
increased to the point whevep(p)e™/(2/mR?) < w,. Rouletting pseudoparticles whose expected
detector contribution is small also has the added benefit that those pseudoparticles surviving
Russian roulette now have larger weights, so the disparity in particle weights reaching the
detector is reduced. Typically, using the DD card will increase the efficiency of detector
problems by a factor of ten. This Russian roulette is so powerful that it is one of two MCNP
variance reduction options that is turned on by default. The default valus 0f1. The other
default variance reduction option is implicit capture.

The DD card Russian roulette game is almost foolproof. Performance is relatively insensitive to
the input value of k. For most applications the default vallke=00.1is adequate. Usually,
choose&k so that there are 1-5 transmissions (pseudoparticle contributions) per source history. If
kis too large, too few pseudoparticles are sampled;kkus is a fatal error.

Because a random number is used for the Russian roulette game invokedh)yhe addition

of a detector tally affects the random walk tracking processes. Detectors are the only tallies that
affect results. If any other tally type is added to a problem, the original problem tallies remain
unchanged. Because detectors use the default DD card Russian roulette game, and that game
affects the random number sequence, the whole problem will track differently and the original
tallies will agree only to within statistics. Because of this tracking difference, itis recommended
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thatk < 0 be used once a good guessvatan be made. This is especially important if a problem
needs to be debugged by starting at some history past the first ond ABmakes the first
200 histories run faster.

There are two cases when it is beneficial to turn off the DD card Russian roulette game by setting
k = 0. First, when looking at the tail of a spectrum or some other low probability event, the DD
card roulette game will preferentially eliminate small scores and thus eliminate the very
phenomenon of interest. For example, if energy bias is used to preferentially produce high
energy particles, these biased particles will have a lower weight and thus preferentially will be
rouletted by the DD card game. Second, in very deep penetration problems, pseudopatrticles will
sometimes go a long way before being rouletted. In this rare case it is wasteful to roulette a
pseudoparticle after a great deal of time has been spent following it and perhaps a fractional PD
card should be used or, if possible, a cell or surface tally.

d. Coincidendetectors: Because tracking pseudoparticles is very expensive, MCNP uses
a single pseudoparticle for multiple detectors, known as coincident detectors, that must be
identical in:

geometric location,

particle type (that is, neutron or photon),

upper time bin limit,

DD card Russian Roulette control parameteand

PD card entries, if any.
Energy bins, time bins, tally multipliers, response functions, fictitious sphere radii, user-supplied
modifications (TALLYX), etc., can all be different. Coincident detectors require little additional
computational effort because most detector time is spent in tracking a pseudoparticle. Multiple
detectors using the same pseudoparticle are almost “free.”

e. Direct vs. total contribtion: Unless specifically turned off by the user, MCNP
automatically prints out both the direct and total detector contribution. Recall that
pseudoparticles are generated at source and collision events. The direct contribution is that
portion of the tally from pseudoparticles born at source events. The total contribution is the total
tally from both source and collision events. For Mode N P problems with photon detectors, the
direct contribution is from pseudophotons born in neutron collisions. The direct contributions
for detailed photon physics will be smaller than the simple physics direct results because
coherent scattering is included in the detailed physics total cross section and omitted in the
simple physics treatment.

f.  Angular distritution functions for point detectors: All detector estimates require
knowledge of thg(l) term, the value of the probability density function at an artjle , wpere
= cosO . This quantity is available to MCNP for the standard source and for all kinds of
collisions. For user-supplied source subroutines, MCNP assumes an isotropic distribution
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dQ _ 2mdudg _

1
p(p)du = — = J’o T = 50

41
Therefore, the variable PS@F) = 1/2. If the source distribution is not isotropic in a user-
supplied source subroutine, the user must also supply a subroutine SRCDX if there are any
detectors or DXTRAN spheres in the problem. In subroutine SRCDX, the variable PSC must be
set for each detector and DXTRAN sphere. An example of how this is done and also a
description of several other source angular distribution functions is in Chapter 4.

g. Detectors and th8§a.3) thermal treatment: Th&a,3) thermal treatment poses
special challenges to next event estimators because the probability density function for angle has
discrete lines to model Bragg scattering and other molecular effects. Therefore, MCNP has an
approximate mod&f that, for the PSC calculation (not the transport calculation), replaces the
discrete lines with finite histograms of widih< .1

This approximation has been demonstrated to accurately model the discr&@ |p)edata. In
cases where continuous data is approximated with discrete lines, the approximate scheme
cancels the errors and models the scattering better than the randoff Talk. theS(a,B)

thermal treatment can be used with confidence with next event estimators like detectors and
DXTRAN.

F.  Additional Tally Features

The standard MCNP tally types can be controlled, modified, and beautified by other tally cards.
These cards are described in detail in Chapter 3; an overview is given here.

1. Binlimit control

The integration limits of the various tally types are controlled by E, T, C, and FS cards. The E
card establishes energy bin ranges; the T card establishes time bin ranges; the C card establishes
cosine bin ranges; and the FS card segments the surface or cell of a tally into subsurface or
subcell bins.

2. Flagqging
Cell and surface flagging cards, CF and SF, determine what portion of a tally comes from where.

Example: F4 1
CF4 234

The flux tally for cell 1 is output twice: first, the total flux in cell 1; and second, the flagged tally,
or that portion of the flux caused by particles having passed through cells 2, 3, or 4.
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3. Multipliers and modification

MCNP tallies can be modified in many different ways. The EM, TM, and CM cards multiply the
guantities in each energy, time, or cosine bin by a different constant. This capability is useful for
modeling response functions or changing units. For example, a surface current tally can have its
units changed to per steradian by entering the inverse steradian bin sizes on the CM card.

The DE and DF cards allow modeling of an energy-dependent dose function that is a continuous
function of energy from a table whose data points need not coincide with the tally energy bin
structure (E card). An example of such a dose function is the flux-to-radiation dose conversion
factor given in Appendix H.

The FM card multiplies the F1, F2, F4, and F5 tallies by any continuous-energy quantity
available in the data libraries. For example, average heating nubhpgiS) and total cross
sectionor(E) are stored on the MCNP data libraries. An F4 tally multipliecoliA ,,((E)pa/ Py
converts it to an F6 tally, or an F5 detector tally multiplied by the same quantity calculates
heating at a point (see page 2—82). The FM card can modify any flux or current tally of the form
¢ (E)dE into [R(E)¢ (E)dE , whereR(E)is any combination of sums and products of energy-
ependent quantities known to MCNP.
The FM card can also model attenuation. Here the tally is conver dr(ﬁ)e_o‘(E)andE ,
wherexis the thickness of the attenuatpy,is its atom (ggepn;,ity, and, is its total cross section.
Double parentheses allow the calculatiof@{E)e © " * R(E)dE . More complex
expressions ofi,(E)p x are allowed so that'many attenuators may be stacked. This is useful for
calculating attenuation in line-of-sight pipes and through thin foils and detector coatings,
particularly when done in conjunction with point and ring detector tallies. Beware, however, that
attenuation assumes that the attenuated portion of the tally is lost from the system by capture or
escape and cannot be scattered back in.

Two special FM card options are available. The first optionR€E= 1/¢(E) to score tracks or
collisions. The second option s&€EE) = lvelocityto score population or prompt removal
lifetime.

4. Special Treatments

A number of special tally treatments are available using the FT tally card. A brief description of
each one follows.

a. Changecurrenttally referencevector: F1 current tallies measure bin angles relative to
the surface normal. They can be binned relative to any arbitrary vector with the FRV option.
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b. Gaussian engy broadening: The GEB option can be used to better simulate a
physical radiation detector in which energy peaks exhibit Gaussian energy broadening. The
tallied energy is broadened by sampling from the Gaussian:

rE— Eof
O A O
f(E)y =ce ",
where E = the broadened energy;
E, = the unbroadened energy of the tally;
C = anormalization constant; and
A = the Gaussian width.

The Gaussian width is related to the full width half maximum (FWHM) by

A = EWHM _ 60056120439322FWHM
2./In2

The desired FWHM is specified by the user—provided constants, a, b, and c, where

FWHM = a+ b/E+ cB .

The FWHM is defined a&#WHM = 2(E-\yyum — Eo).
WhereEpyyyis Such thatf(Epyeny) = % f(Ey)
andf(E,) is the maximum value d&(E).

c. Timeconvolution: Because the geometry and material compositions are independent
of time, except in the case of time-dependent temperatures, the expectddttalyr) at time
t+ 1 from a source particle emitted at tirhis identical to the expected tally(0,1) from a source
particle emitted at time 0. Thus, if a calculation is performed with all source particles started at
t=0, one has an estimate 6(0,1) and the tallies‘l’Qi from a number of time-distributed sources.
Qi(t) can be calculated at timg  as

To() = QT = [ QOTO.N-0ek |

by sampling from Q,(t) and recording each particle’s tally (shiftedf)yor after the calculation
by integratingQ;(t) multiplied by the histogram estimate ©{0, n —t) . The latter method is
used in MCNP to simulate a source as a square pulse starting ataimdesnding at timb,
wherea andb are supplied by the TMC option.
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d. Binningbythenumberof collisions: Tallies can be binned by the number of collisions
that caused them with the INC option and an FU card. A current tally, for example, can be
subdivided into the portions of the total current coming from particles that have undergone zero,
one, two, three,. collisions before crossing the surface. In a point detector tally, the user can
determine what portion of the score came from particles having their 1st, 2nd, 3rd, ... collision.
Collision binning is particularly useful with the exponential transform because the transform
reduces variance by reducing the number of collisions. If particles undergoing many collisions
are the major contributor to a tally, then the exponential transform is ill-advised. When the
exponential transform is used, the portion of the tally coming from particles having undergone
many collisions should be small.

e. Binning by detector cell: The ICD option with an FU card is used to determine what
portion of a detector tally comes from what cells. This information is similar to the detector
diagnostics print, but the FT card can be combined with energy and other binning cards. The
contribution to the normalized rather than unnormalized tally is printed.

f.  Binningby sourcdlistribution: The SCX and SCD options are used to bin a tally score
according to what source distribution caused it.

d. Binning by multigroup particle type: The PTT option with an FU card is used to bin
multigroup tallies by particle type. The MCNP multigroup treatment is available for neutron,
coupled neutron/photon, and photon problems. However, charged particles or any other
combinations of particles can be run with the various particles masquerading as neutrons and are
printed out in the OUTP file as if they were neutrons. With the PTT option, the tallies can be
segregated into particle types by entering atomic weights in units of MeV on the FU card. The
FU atomic weights must be specified to within 0.1% of the true atomic weight in MeV units:
thus FU .511 specifies an electron, but .510 is not recognized.

h. Binning by particle chaje: The ELC option allows binning F1 current tallies by
particle charge. There are three ELC options:

1. cause negative electrons to make negative scores and positrons to make positive
scores. Note that by tallying positive and negative numbers the relative error is
unbounded and this tally may be difficult to converge;

2. segregate electrons and positrons into separate bins plus atotal bin. There will be three
bins (positron, electron, and total) all with positive scores. The total bin will be the
same as the single tally bin without the ELC option.

3. segregate electrons and positrons into separate bins plus a total bin, with the electron
bin scores being all negative to reflect their charge. The bins will be for positrons
(positive scores), electrons (negative scores), and total. The total bin will be the same
as the single bin with the first ELC option above (usually with negative scores because
there are more electrons than positrons).
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5. User modification

If the above capabilities do not provide exactly what is desired, tallies can be modified by a user-
supplied TALLYX subroutine (FU card). As with a user-supplied SOURCE subroutine, which
lets the user provide his own specialized source, the TALLYX subroutine lets the user modify
any tally, with all the programming changes conveniently located in a single subroutine.

6. Tally output format

Not only can users change the contents of MCNP tallies, the output format can be modified as
well. Any desired descriptive comment can be added to the tally title by the tally comment (FC)
card. The printing order can be changed (FQ card) so that instead of, for instance, getting the
default output blocks in terms of time vs. energy, they could be printed in blocks of segment vs.
cosine. The tally bin that is monitored for the tally fluctuation chart printed at the problem end
and used in the statistical analysis of the tally can be selected (TF card). Detector tally diagnostic
prints are controlled with the DD card. Finally, the PRINT card controls what optional tables are
displayed in the output file.

VI. ESTIMATION OF THE MONTE CARLO PRECISION

Monte Carlo results represent an average of the contributions from many histories sampled
during the course of the problem. An important quantity equal in stature to the Monte Carlo
answer (or tally) itself is the statistical error or uncertainty associated with the result. The
importance of this error and its behavior vs. the number of histories cannot be overemphasized
because the user not only gains insight into the quality of the result, but also can determine if a
tally appears statistically well behaved. If a tally is not well behaved, the estimated error
associated with the result generally will not reflect the true confidence interval of the result and,
thus, the answer could be completely erroneous. MCNP contains several quantities that aid the
user in assessing the quality of the confidence int&%val.

The purpose of this section is to educate MCNP users about the proper interpretation of the
MCNP estimated mean, relative error, variance of the variance, and history score probability
density function. Carefully check tally results and the associated tables in the tally fluctuation
charts to ensure a well-behaved and properly converged tally.

A. Monte Carlo Means, Variances, and Standard Deviations

Monte Carlo results are obtained by sampling possible random walks and assigninga score
(for examplex = energy deposited by thild random walk) to each random walk. Random walks
typically will produce a range of scores depending on the tally selected and the variance
reduction chosen.
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Supposd(x) is the history score probability density function for selecting a random walk that
scorex to the tally being estimated. The true answer (or mean) is the expected va|Uu&(o)
where

E(x) = Ixf(x)dx = true mean.

The functionf(x) is seldom explicitly known; thug(x) is implicitly sampled by the Monte Carlo
random walk process. The true mean then is estimated by the sampl& mean where

X =

_ZI|—\

N
Z X (2.15)
i=1

wherey; is the value ok selected fronf(x) for thei history andN is the number of histories
calculated in the problem. The Monte Carlo mean is the average value of the gdores|
the histories calculated in the problem. The relationship betiggRandx is given by the
Strong Law of Large Numbeérshat states that E(x) is finite, X tends to the limE(x) asN
approaches infinity.

The variance of the population pivalues is a measure of the spread in these values and is given
by*

0‘2 = J’(X—E(X))Zf(X)dX = E(Xz)—(E(X))Z

The square root of the varianceaswhich is called the standard deviation of the population of
scores. As withe(x), o is seldom known but can be estimated by Monte Carlg gs/en by (for
largeN)

N 2
2 (X% =X W
Sz = —I:—qu(——l_l——)_ DXZ—)_(2 (2.16a)

and

N

2
X =

Zl-

2
X . (2.16b)
1

The quantitySis the estimated standard deviation of the populatioxnkzsed on the values of
x; that were actually sampled.

The estimated variance &f is given by
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_ ¢
S = S 2.17)

These formulae do not depend on any restriction on the distributioorat (such as normality)
beyond requiring tha(x) ando? exist and are finite. The estimated standard deviation of the
meanx is given bys, .

It is important to note tha, is proportionalt/N , which is the inherent drawback to the
Monte Carlo method. To hal\&, , four times the original number of histories must be
calculated, a calculation that can be computationally expensive. The q@ntity  can also be
reduced for a specifidd by makingSsmaller, reducing the inherent spread of the tally results.
This can be accomplished by using variance reduction techniques such as those discussed in
section VII of this chapter.

B. Precision and Accuracy

There is an extremely important difference between precision and accuracy of a Monte Carlo
calculation. As illustrated in Fig. 2-1@recision is the uncertainty i caused by the statistical

SYSTEMATIC
~ill—— ERROR —i

Sx

| |
TRUTH E[x]

Figure 2-10.

fluctuations of the's for the portion of physical phase space sampled by the Monte Carlo
process. Important portions of physical phase space might not be sampled because of problem
cutoffs in time or energy, inappropriate use of variance reduction techniques, or an insufficient
sampling of important low-probability even#ccurag is a measure of how close the expected
value ofx ,E(X), is to the true physical quantity being estimated. The difference between this
true value andE(x) is calledthe systematic error, which is seldom known. Error or uncertainty
estimates for the results of Monte Carlo calculations refgy to theprecision of the result and

not to theaccurag. It is quite possible to calculate a highly precise result that is far from the
physical truth because nature has not been modeled faithfully.
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1. Factors Affecting Problem Accuracy

Three factors affect the accuracy of a Monte Carlo result: (1) the code, (2) problem modeling,
and (3) the user. Code factors encompass: the physics features included in a calculation as well
as the mathematical models used; uncertainties in the data, such as the transport and reaction
cross sections, Avogadro's number, atomic weights, etc.; the quality of the representation of the
differential cross sections in energy and angle; and coding errors (bugs). All of the applicable
physics must be included in a calculation to produce accurate results. Even though the
evaluations are not perfect, more faithful representation of the evaluator's data should produce
more accurate results. The descending order of preference for Monte Carlo data for calculations
is continuous energy, thinned continuous energy, discrete reaction, and multigroup. Coding
errors can always be a problem because no large code is bug-free. MCNP, however, is a very
mature, heavily used production code. With steadily increasing use over the years, the likelihood
of a serious coding error continues to diminish.

The second area, problem-modeling factors, can quite often contribute to a decrease in the
accuracy of a calculation. Many calculations produce seemingly poor results because the model
of the energy and angular distribution of the radiation source is not adequate. Two other
problem-modeling factors affecting accuracy are the geometrical description and the physical
characteristics of the materials in the problem.

The third general area affecting calculational accuracy involves user errors in the problem input
or in user-supplied subroutines and patches to MCNP. The user can also abuse variance
reduction techniques such that portions of the physical phase space are not allowed to contribute
to the results. Checking the input and output carefully can help alleviate these difficulties. A last
item that is often overlooked is a user's thorough understanding of the relationship of the Monte
Carlo tallies to any measured quantities being calculated. Factors such as detector efficiencies,
data reduction and interpretation, etc., must be completely understood and included in the
calculation, or the comparison is not meaningful.

2. Factors Affecting Problem Precision

The precision of a Monte Carlo result is affected by four user-controlled choices: (1) forward vs.
adjoint calculation, (2) tally type, (3) variance reduction techniques, and (4) number of histories
run.

The choice of a forward vs. adjoint calculation depends mostly on the relative sizes of the source
and detector regions. Starting particles from a small region is easy to do, whereas transporting
particles to a small region is generally hard to do. Because forward calculations transport

particles from source to detector regions, forward calculations are preferable when the detector
(or tally) region is large and the source region is small. Conversely, because adjoint calculations
transport particles backward from the detector region to the source region, adjoint calculations
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are preferable when the source (or tally) region is large and the detector region is small. MCNP
can be run in multigroup adjoint mode. There is no continuous-energy adjoint capability.

As alluded to above, the smaller the tally region, the harder it becomes to get good tally
estimates. An efficient tally will average over as large a region of phase space as practical. In this
connection, tally dimensionality is extremely important. A one-dimensional tally is typically 10

to 100 times easier to estimate than a two-dimensional tally, which is 10 to 100 times easier than
a three-dimensional tally. This fact is illustrated in Fig. 2-15 later in this section.

Variance reduction techniques can be used to improve the precision of a given tally by increasing
the nonzero tallying efficiency and by decreasing the spread of the nonzero history scores. These
two components are depicted in a hypothetiPglshown in Fig. 2-11. See page 2—113 for more

ZeTros
FREQUENCY
OF
SAMPLING
| bl
0 E[x]
TALLY /HISTORY
Figure 2-11.

discussion about the empiridék) for each tally fluctuation chart bin. A calculation will be more
precise when the history-scoring efficiency is high and the variance of the nonzero scores is low.
The user should strive for these conditions in difficult Monte Carlo calculations. Examples of
these two components of precision are given on page 2—-109.

More histories can be run to improve precision (see se€@itmlowing). Because the precision

is proportional to /N , running more particles is often costly in computer time and therefore
is viewed as the method of last resort for difficult problems.

C. The Central Limit Theorem and Monte Carlo Confidence Intervals

To define confidence intervals for the precision of a Monte Carlo result, the Central Limit
Theorent of probability theory is used, stating that

lim Pr[E(x)+a%<>‘<< E(x)+[3%} = Zinfxe“z/zdt ,
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wherea andf3 can be any arbitrary values and Pr[Z] means the probability of Z. In terms of the
estimated standard deviation®f S, , this may be rewritten in the following approximation for
largeN:

Pr[a%< 059()<BSX} ﬁjﬁ et 2t

This crucial theorem states that for large valudd @hat is, asN tends to infinity) and

identically distributed independent random variabjegth finite means and variances, the
distribution of thex ’'s approaches a normal distribution. Therefore, for any distribution of tallies
(an example is shown in Fig. 2-11), the distribution of resulting ’s will be approximately
normally distributed, as shown in Fig. 2-10, with a meai©f). If Sis approximately equal to

o, which is valid for a statistically significant sampling of a tally (Ndas tended to infinity),
then

X—25 <E(X) <X+ &, ~68% of the time and (2.18a)
X —25; <E(X) <X+ 2S5, ~95% of the time (2.18b)

from standard tables for the normal distribution function. Eg. (2.18a) is a 68% confidence
interval and Eq. (2.18b) is a 95% confidence interval.

The key point about the validity of these confidence intervals is that the physical phase space
must be adequately sampled by the Monte Carlo process. If an important path in the geometry
or a window in the cross sections, for example, has not been well sampled, botts, and  will
be unknowingly incorrect and the results will be wrong, usually tending to be too small. The user
must take great care to be certain that adequate sampling of the source, transport, and any tally
response functions have indeed taken place. Additional statistical quantities to aid in the
assessment of proper confidence intervals are described in later portions of section VI.

D. Estimated Relative Errors in MCNP

All standard MCNP tallies are normalized to be per starting particle history (except for some
criticality calculations) and are printed in the output with a second number, which is the
estimated relative error defined as

R=S/x (2.19a)
The relative error is a convenient number because it represents statistical precision as a fractional

result with respect to the estimated mean.
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Combining Egs. (2.15), (2.16), and (2.17), R can be written (for Nygs

- 1/2 N 2 1/2
2 0 T X
R = F % — 1D} = ["—1' — 1} . (2.19b)

® O AT

Several important observations about the relative error can be made from Eq. (2.19b). First, if
all thex's are nonzero and equ#jis zero. Thus, low-variance solutions should strive to reduce
the spread in thg’s. If thex’s are all zeroRis defined to be zero. If only one nonzero score is
made Rapproaches unity d¢becomes large. Therefore, fgis of the same sigrs;,  can never

be greater tham because R never exceeds unity. For positive and negatean exceed

unity. The range dR values forx;’s of the same sign is therefore between zero and unity.

To determine what values &flead to results that can be stated with confidence using Egs. (2.6),
consider Eqg. (2.19b) for a difficult problem in which nonzero scores occur very infrequently. In
this case,

N 2
2 - 1%
1 « __I___l__l._ (220&)

N N 2"
(Zi = 1%)

For clarity, assume that there areut of N (n« N) nonzero scores that are identical and equal
to x. With these two assumptior® for “difficult problems” becomes

271/2 1
nx
RD.P.~ - = —, N« N . (220b)
szz} Jn

This result is expected because the limiting form of a binomial distribution with infrequent
nonzero scores and largeis the Poisson distribution, which is the form in Eq. (2.20b) used in
detector “counting statistics.”

TABLE 2.2:
Estimated Relative Error R vs. Number of Identical Talliesn for Large N
n 1 4 16 25 100 400

R 1.0 0.5 0.25 020 0.10 0.05

Through use of Eqgs. (2.8), a tableRofalues versus the number of tallies or “counts” can be
generated as shown in Table 2.2. A relative error of 0.5 is the equivalent of four counts, which
is hardly adequate for a statistically significant answer. Sixteen counts is an improvement,
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reducingR to 0.25, but still is not a large number of tallies. The same is trueeiguals 25.
Whennis 100,Ris 0.10, so the results should be much improved. With 400 tallieR,ci®.05
should be quite good indeed.

Based on this qualitative analysis and the experience of Monte Carlo practitioners, Table 2.3
presents the recommended interpretation of the estimatedrifidence intervakx(1+ R) for
various values oR associated with an MCNP tally. These guidelines were determined
empirically, based on years of experience using MCNP on a wide variety of problems. Just
before the tally fluctuation charts, a “Status of Statistical Checks” table prints how many tally
bins of each tally have valuesRfexceeding these recommended guidelines.

TABLE 2.3:
Guidelines for Interpreting the Relative Error R?
Range oRR Quality of the Tally
05t01 Garbage
0.2t00.5 Factor of a few
0.1t0 0.2 Questionable
<0.10 Generally reliable except for point detector
<0.05 Generally reliable for point detector

¥R = S/x and represents the estimated statistical relative error adHevel. These in-
terpretations oR assume that all portions of the problem phase space have been well sam-
pled by the Monte Carlo process.

Point detector tallies generally require a smaller valuRfof valid confidence interval
statements because some contributions, such as those near the detector point, are usually
extremely important and may be difficult to sample well. Experience has shown tRae$sr
than 0.05, point detector results are generally reliable. FBad®.10, point detector tallies may
only be known within a factor of a few and sometimes not that well (see the pathological
example on page 2-123.)

MCNP calculates the relative error for each tally bin in the problem using Eq. (2.19bk; Each
is defined as the total contribution from tHestarting particle and all resulting progeny. This
definition is important in many variance reduction methods, multiplying physical processes such
as fission orr{,xn) neutron reactions that create additional neutrons, and coupled neutron/
photon/electron problems. TH& source particle and its offspring may thus contribute many
times to a tally and all of these contributions are correlated because they are from the same
source patrticle.

Figure 2.12 represents the MCNP process of calculating the first and second moments of each
tally bin and relevant totals using three tally storage blocks of equal length for each tally bin. The
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hypothetical grid of tally bins in the bottom half of Fig. 2-12 has 24 tally bins including the time
and energy totals. During the course oftfidistory, sums are performed in the first MCNP tally
storage block. Some of the tally bins receive no contributions and others receive one or more
contributions. At the conclusion of th® history, the sums are added to the second MCNP tally
storage block. The sums in the first MCNP tally storage block are squared and added to the third
tally storage block. The first tally storage block is then filled with zeros and histotybegins.

After the last histor\, the estimated tally means are computed using the second MCNP tally
storage block and Eq. (2.15). The estimated relative errors are calculated using the second and
third MCNP tally storage blocks and Eqg. (2.19b). This method of estimating the statistical
uncertainty of the result produces the best estimate because the batch size is one, which
minimizes the variance of the variarf¢é®

Note that there is no guarantee that the estimated relative error will decrease inversely
proportional to the/N  as required by the Central Limit Theorem because of the statistical
nature of the tallies. Early in the problelRwvill generally have large statistical fluctuations.
Later, infrequent large contributions may cause fluctuatior&in  and to a lesser extentin  and
therefore inR. MCNP calculates BOM for one bin of each numbered tally to aid the user in
determining the statistical behavior as a function of N and the efficiency of the tally.

MCNP TALLY BLOCKS

Runni ng
Hi story X
Scor es

i
2 X
I } Suns per f or ned
zxz after each history
i

Particle batch size is one

HYPOTHET!I CAL TALLY GRI D

Ener gy
«——————FEner gy ——| Total
A
XX XX
Ti e X X
X X XX
A\ 4
Ti me G and
Tot al o X X XORX Tot al

X=Score fromthe present history

Figure 2-12.
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E. MCNP Figure of Merit

The estimated relative error squafdshould be proportional tb/N, as shown by Eq. (2.19a).
The computer tim& used in an MCNP problem should be directly proportion&ttherefore,
R°T should be approximately a constant within any one Monte Carlo run. It is convenient to
define a figure of meriHOM) of a tally to be

FOM=— . (2.21a)
R2T

MCNP prints the=FOM for one bin of each numbered tally as a functioNpfvhere the unit of
computer timel is minutes The table is printed in particle increments of 1000 up to 20,000
histories. Between 20,000 and 40,000 histories, the increment is doubled to 2000. This trend
continues, producing a table of up to 20 entries. The default increment can be changed by the
5th entry on the PRDMP card.

TheFOM is a very important statistic about a tally bin and should be studied by the user. Itis a
tally reliability indicator in the sense that if the tally is well behavedF® should be
approximately a constant with the possible exception of statistical fluctuations very early in the
problem. An order-of-magnitude estimate of the expected fractional statistical fluctuations in the
FOM s 2R This result assumes that both the relative statistical uncertainty in the relative error
is of the order of the relative error itself and the relative error is small compared to unity. The
user shoulclways examine the tally fluctuation charts at the end of the problem to check that
the FOMs are approximately constant as a function of the number of histories for each tally.

The numerical value of tHeOM can be better appreciated by considering the relation

R=1/JFOMUT (2.21b)

Table 2.4 shows the expected valu&dhat would be produced in a one-minute probldns(1)
as a function of the value of tR©M. It is clearly advantageous to have a |dF@M for a
problem because the computer time required to reach a desired level of precision is
proportionally reduced. Examination of Eq. (2.21b) shows that doubling@ié for a problem
will reduce the computer time required to achieve the salnea factor of two.

TABLE 2.4:
R Values as a Function of thé&OM for T = 1 Minute
FOM 1 10 100 1000 10000
R 1.0 0.32 0.10 0.032 0.010
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In summary, thd=OM has three uses. The most important use is as a tally reliability indicator.

If the FOM is not approximately a constant (except for statistical fluctuations early in the
problem), the confidence intervals may not overlap the expected scorekatye¢he expected
fraction of the time. A second use for tROM is to optimize the efficiency of the Monte Carlo
calculation by making several short test runs with different variance reduction parameters and
then selecting the problem with the large€2M. Remember that the statistical behavior of the
FOM (i.e., R) for a small number of histories may cloud the selection of techniques competing
at the same level of efficiency. A third use for (R@M is to estimate the computer time required

to reach a desired value Rby usingT ~ 1/RFOM.

F.  Separation of Relative Error into Two Components

Three factors that affect the efficiency of a Monte Carlo problem are (1) history-scoring
efficiency, (2) dispersions in nonzero history scores, and (3) computer time per history. All three
factors are included in tHeEOM. The first two factors control the valueRifthe third isT.

The relative grror can be separated into two components: the nonzero history-scoring efficiency
componeniReff and the intrinsic spread of the nonxesooresR,m Defining to be the
fraction of histories producing nonzex, Eq. 2.19b can be rewritten as

N 2 2 2
S X 2., Xi 2, Xi —
Rz_l_;_l_l__%:_xuﬂ__ - Zxz0? 1 ,1-9 (2.223)

1
2 2" N 2
(ZiN: 1Xi) (inioxi) N (zxiio Xi) gN g

Note by Eq. 2.19b that the first two terms are the relative error gi\thenzero scores. Thus
defining,

2 Xt
: 1
R, = ——X—i—g——-a——lﬁ and (2.22b)
(in z0 Xi) 9
Rox = (1-q)/(aN)  yields (2.22¢)
RO = R +R. . (2.22d)
For identical nonzerg’s, Riznt is zero and for a 100% scoring efﬁcienﬁfgﬁ is zero. Itis

usually possible to increagdor most problems using one or more of the MCNP variance
reduction techniques. These techniques alter the random walk sampling to favor those particles
that produce a nonzero tally. The particle weights are then adjusted appropriately so that the
expected tally is preserved. This topic is described in Sec. VII (Variance Reduction) beginning
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onpage 2-127 . The sum of the two terms of EQ. (2.22d) produces the same resultas Eq. (2.19b).
Both R, andRy; are printed for the tally fluctuation chart bin of each tally so that the
dominant component & can be identified as an aid to making the calculation more efficient.

These equations can be used to better understand the effects of scoring inefficiency; that is, those
histories that do not contribute to a tally. Table 2.5 shows the expected vaRigs of asa
function ofg and the number of historiéé This table is appropriate for identical nonzero scores

and represents the theoretical minimum relative error possible for a spgafiddl. It is no

surprise that small values gfequire a compensatingly large number of particles to produce
precise results.

TABLE 2.5:

Expected Values oR.4as a Function ofg and N

q 0.001 0.01 0.1 0.5
N
10° 0.999 0.315 0.095 0.032
10 0.316 0.099 0.030 0.010
10° 0.100 0.031 0.009 0.003
10° 0.032 0.010 0.003 0.001

A practical example of scoring inefficiency is the case of infrequent high-energy patrticles in a
down-scattering-only problem. If only a small fraction of all source patrticles has an energy in
the highest energy tally bin, the dominant component of the relative error will probably be the
scoring efficiency because only the high-energy source particles have a nonzero probability of
contributing to the highest energy bin. For problems of this kind, it is often useful to run a
separate problem starting only high-energy particles from the source and to raise the energy
cutoff. The much-improved scoring efficiency will result in a much lalFgaw for the high-

energy tally bins.

To further illustrate the components of the relative error, consider the five examples of selected
discrete probability density functions shown in Fig. 2-13. Cases | and Il have no dispersion in
the nonzero scores, cases Il and IV have 100% scoring efficiency, and case V contains both
elements contributing tB. The most efficient problem is case Ill. Note that the scoring
inefficiency contributes 75% to R in case V, the second worst case of the five.
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FI VE CASES WTH A MEAN OF 0.5
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G. Variance of the Variance

Previous sections have discussed the relative error R and figure of merit FOM as measures of the
quality of the mean. A quantity called the relative variance of the variance (VOV) is another
useful tool that can assist the user in establishing more reliable confidence intervals. The VOV
is the estimated relative variance of the estimated R. The VOV involves the estimated third and
fourth moments of the empirical history score probability density function (K®)FRnd is

much more sensitive to large history score fluctuations than is R. The magnitude and NPS
behavior of the VOV are indicators of tally fluctuation chart (TFC) bin convergence. Early work
was done by Estes and CashWe#ind Pedersdi later reinvestigated this statistic to determine

its usefulness.

The VOV is a quantity that is analogous to the square of the R of the mean, except it is for R
instead of the mean. The estimated relative VOV of the mean is defined as
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VoV = £(S)/S
Where§ is the estimated variancesof a@zc(si) is the estimated variarﬁe in . The VOV
is a measure of the relative statistical uncertainty in the estimated R and is important f&cause
must be a good approximation@mto use the Central Limit Theorem to form confidence

intervals.

The VOV for a tally bifi®is

VOV = 5(x -0/ (E(x -%)%)° —1/N . (2.23)

This is the fourth central moment minus the second central moment squared normed by the
product ofN and the second central moment squared.

When Eq. (2.23) is expanded in terms of sums of powets ibbecomes

vou - Sx —AZxIx /N +63x(x)°/N°=3(zx)"/N°

Zl~

(X~ (2x)°/N)”

or

2 3 2
Sx —AZxIx /N +85x(Ex)° /N —4(zx)*/N = (2x) /N
VOV =

(2.24)
(532 = (£x)%/N)°

Now consider the truncated Cauchy formula for the following analysis. The truncated Cauchy is
similar in shape to some difficult Monte Carlo tallies. After numerous statistical experiments on
sampling a truncated positive Cauchy distribution

Cauchy f( § = 2/m(1+x°),0sx<x (2.25)

itis concluded that the VOV should be below 0.1 to improve the probability of forming a reliable
confidence interval. The quantity 0.1 is a convenient value and is why the VOV is used for the
statistical check and not the square root of the VOV (R of the R). Multiplying numerator and
denominator of Eq. (2.24) by/N converts the terms intg" averages and shows that the VOV
is expected to decreaseldhl.

It is interesting to examine the VOV for threidentical history scores (n « N) that were used
to analyze R in Table 2.2, page 2-105. The VOV behavesasthis limit. Therefore, ten
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identical history scores would be enough to satisfy the VOV criterion, a factor of at least ten less
than the R criterion. There are two reasons for this phenomenon: 1) it is more important to know
R well than the VOV in forming confidence intervals; and 2) the history scores will ordinarily
not be identical and thus the fourth moment terms in the VOV will increase rapidly over the
second moment terms in R.

The behavior of the VOV as a function Nffor the TFC bin is printed in the OUTP file. Because
the VOV involves third and fourth moments, the VOV is a much more sensitive indicator to large
history scores than the R, which is based on first and second moments. The desired VOV
behavior is to decrease inversely withThis criterion is deemed to be a necessary, but not
sufficient, condition for a statistically well-behaved tally result. A tally with a VOV that matches
this criteria is NOT guaranteed to produce a high quality confidence interval because
undersampling of high scores will also underestimate the higher score moments.

To calculate the VOV of every tally bin, put a nonzero 15th entry on the DBCN card. This option
c%eates t)r/vo additional history score moment tables each of length MXF in the TAL array to sum
x; andx; (see Fig. 2-12). This option is not the default because the amount of tally storage will
increase by 2/5, which could be prohibitive for a problem with many tally bins. The magnitude
of the VOV in each tally bin is reported in the “Status of Statistical Checks” table. History—
dependent checks of the VOV of all tally bins can be done by printing the tallies to the output
file at some frequency using the PRDMP card.

H.  Empirical History Score Probability Density Function f(x)
1. Introduction

This section discusses another statistic that is useful in assessing the quality of confidence
intervals from Monte Carlo calculations. Consider a generic Monte Carlo problem with difficult
to sample, but extremely important, large history scores. This type of problem produces three
possible scenarid¥.

The first, and obviously desired, case is a correctly converged result that produces a statistically
correct confidence interval. The second case is the sampling of an infrequent, but very large,
history score that causes the mean and R to increase and the FOM to decrease significantly. This
case is easily detectable by observing the behavior of the FOM and the R in the TFCs.

The third and most troublesome case yields an answer that appears statistically converged based
on the accepted guidelines described previously, butin fact may be substantially smaller than the
correct result because the large history tallies were not well sampled. This situation of too few
large history tallies is difficult to detect. The following sections discuss the use of the empirical
history score probability density function (PO) to gain insight into the TFC bin result. A
pathological example to illustrate the third case follows.
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2. The History Score Probability Density Functigx)

A history score posted to a tally bin can be thought of as having been sampled from an
underlying and generally unknown history score P@J; where the random varialbas the

score from one complete particle history to a tally bin. The history score can be either positive
or negative. The quantifyx)dxis the probability of selecting a history score betweand

X + dx for the tally bin. Each tally bin will have its ovix).

The most general form for expressiiig) mathematically is

FOO = f.00+ 5 pid(x=x%)

i=1

wheref(X) is thecontinuous nonzero part aliqri': 1Pd(x=x)  representsittidferent
discrete components occurringxatvith probability p;. An f(x) could be composed of either or
both parts of the distribution. A history score of zero is includeipas the discrete component
o(x — 0).

By the definition of a PDF,

J'°° f(x)dx=1

As discussed on page 2-%%) is used to estimate the mean, variance, and higher moment
guantities such as the VOV.

3. The Central Limit Theorem arf¢k)

As discussed on page 2—-103, the Central Limit Theorem (CLT) states that the estimated mean
will appear to be sampled from a normal distribution witknawn standard deviation/ (,/N)

whenN approaches infinity. In practice,is NOT known and must be approximated by the
estimated standard deviati®The major difficulty in applying the CLT correctly to a Monte

Carlo result to form a confidence interval is knowing wNeras approached infinity.

The CLT requires the first two momentsf@d) to exist. Nearly all MCNP tally estimators

(except point detectors with zero neighborhoods in a scattering material and some exponential
transform problems) satisfy this requirement. Therefore, the history scoré>RIs0 exists.

One can also examine the behaviof(g]j for large history scores to assesix) appears to have

been “completely” sampled. If “complete” sampling has occurred, the largest values of the
sampledk’s should have reached the upper bound (if such a bound exists) or should decrease
faster tharl/xC so thatE(xz) = I xzf(x)dx exists is assumed to be finite in the CLT).
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OtherwiseNis assumed not to have approached infinity in the sense of the CLT. This is the basis
for the use of the empiric(x) to assess Monte Carlo tally convergence.

The argument should be made that s@qgjst be a good estimatemfthe expected value of
the fourth history score momeE(x ) = [[ X f(x)dx should exist. It will be assumed that
only the second moment needs to exist So thd(stheonvergence criterion will be relaxed
somewhat. Nevertheless, this point should be kept in mind.

4. Analytic Study off(x) for Two-State Monte Carlo Problems

Boot?%%1examined the distribution of history scores analytically for both an analog two-state
splitting problem and two exponential transform problems. This work provided the theoretical
foundation for statistical studi€éon relevant analytic functions to increase understanding of
confidence interval coverage rates for Monte Carlo calculations.

It was found that the two—state splitting probl&r) decreases geometrically as the score
increases by a constant increment. This is equivalent to a negative exponential behavior for a
continuoud(x). Thef(x) for the exponential transform problem decreases geometrically with
geometrically increasing Therefore, the splitting problem produces a linearly decredéimg

for the history score on a lin-log plot of the score probability versus score. The exponential
transform problem generates a linearly decreasing score behavior (with high score negative
exponential roll off) on a log-log plot of the score probability versus score plot. In general, the
exponential transform problem is the more difficult to sample because of the larger impact of the
low probability high scores.

The analytic shapes were compared with a comparable problem calculated with a modified
version of MCNP. These shapes of the analytic and empifigalwere in excellent
agreement?

5. Proposed Uses for the Empiridét) in Each TFC Bin

Few papers discuss the underlying or empifigdifor Monte Carlo transport probler$®

MCNP provides a visual inspection and analysis of the empi(igdbr the TFC bin of each

tally. This analysis helps to determine if there are any unsampled regions (holes) or spikes in the
empirical history score PDix) at the largest history scores.

The most important use for the empirit@ is to help determine N has approached infinity

in the sense of the CLT so that valid confidence intervals can be formed. It is assumed that the
underlyingf(x) satisfies the CLT requirements; therefore, so should the empxicdlnless

there is a largest possible history score, the empiffgaimust eventually decrease more steeply

thanx2 for the second mome%’00 x f (x)dxg to exist. It is postul&tedat if such
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decreasing behavior in the empiri¢at) with no upper bound has not been observed, thien

not large enough to satisfy the CLT becaf(s@has not been completely sampled. Therefore, a
largerN is required before a confidence interval can be formed. It is important to note that this
convergence criterion is NOT affected by any correlations that may exist between the estimated
mean and the estimated R. In principle, this lack of correlation should mak&jhitagnostic

robust in assessing “complete” sampling.

Both the analytic and empirical history score distributions suggest that large score fill-in and one
or more extrapolation schemes for the high score tail d{;theould provide an estimate of
scores not yet sampled to help assess the impact of the unsampled tail on the mean. The
magnitude of the unsampled tail will surely affect the quality of the tally confidence interval.

6. Creation off(x) for TEC Bins

The creation of the empiric&(x) in MCNP automatically covers nearly all TFC bin tallies that
a user might reasonably be expected to make, including the effect of large and small tally
multipliers. A logarithmically spaced grid is used for accumulating the empifxdlecause
the tail behavior is assumed to be of the fakt", n> 3 (unless an upper bound for the history
scores exists). This grid produces an equal width histogram straight lif{&)Yfon a log-log plot
that decreasasdecades ifi(x) per decade increasexn

Ten bins pek decade are used and cover the unnormalized tally rangd @Gftto 10°°. The

term “unnormalized” indicates that normalizations that are not performed until the end of the
problem, such as cell volume or surface area, are not includédifhe user can multiply this
range at the start of the problem by the 16th entry on the DBCN card when the range is not
sufficient. Both history score number and history score for the TFC bin are talliedigritle

With thisx grid in place, the average empiriédk.)  betwremndx;,, is defined to be

f(%) = (number of history scores ifi score bin(x*! - X)) ,

wherex'*! = 1.2589x. The quantity 1.2589 is £t and comes from 10 equally spaced log bins
per decade. The calculatdqx;) s are available on printed plots or by using the “z” plot option
(MCPLOT) with the TFC command mnemonics. Any history scores that are outsiligrttie

are counted as either above or below to provide this information to the user.

Negative history scores can occur for some electron charge deposition tallies. The MCNP default
is that any negative history score will be lumped into one bin below the lowest history score in
the built-in grid (the default i§ x 10 ). If DBCN(16) is negatife;x) will be created from

the negative scores and the absolute DBCN(16) value will be used as the score grid multiplier.
Positive history scores then will be lumped into the lowest bin because of the sign change.
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Figures 2.14 and 2.15 show two simple examples of empif(e from MCNP for 10 million
histories each. Figure 2.14 is from an energy leakage tally directly from a source that is uniform
in energy from 0 to 10 MeV. The analyf(®) is a constant 0.1 between 0 and 10 MeV. The
empiricalf(x) shows the sampling, which is 0.1 with statistical noise at the boweis where

fewer samples are made in the smaller bins.

FILE CONSTNTR ——— TALLY 1
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Figure 2-14.

FILE EXPR ——— TALLY 4

TALLY FLUCTUATION CHART BIN TALLIES

LD P P P P LI PV P LI L MCNP 4A

11/01/93 11:43:1
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Figure 2-15.
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Figure 2.15 shows the sampled distance to first collision in a material that has a macroscopic
cross section of about 0.1 mThis analytic function is a negative exponential given by

f(x) = = exp ZX(see page 2—27) with a mean of 10. The empificdtransitions from a constant

0.1 at values of less than unity to the expected negative exponential behavior.

7. Pareto Fit to the Largest History Scores for the TFC Bin

The slopenin 1/X" of the largest history talliesmust be estimated to determine if and when the
largest history scores decrease faster thah The 201 largest history scores for each TFC bin
are continuously updated and saved during the calculation. A generalized Pareto%unction

Paretof(x) = a 1(1 + kx/ay (k-1

is used to fit the largests. This function fits a number of extreme value distributions including
1/X", exponentialk = 0), and constank(= —1). The large history score tail fitting technique uses
the robust “simplex” algorithmi® which finds the values afandk that best fit the largest history
scores by maximum likelihood estimation.

The number of history score tail points used for the Pareto fit is a maximum of 201 points
because this provides about 10% preciSlimthe slope estimator at= 3. The precision

increases for smaller valuesmand vice versa. The number of points actually used in the fit is
the lesser of 5% of the nonzero history scores or 201. The minimum number of points used for
a Pareto fit is 25 with at least two different values, which requires 500 nonzero history scores
with the 5% criterion. If less than 500 history scores are made in the TFC bin, no Pareto fit is
made.

From the Pareto fit, the slopeféf,4e) is defined to be

SLOPE=(1/k) +1

A SLOPE value of zero is defined to indicate that not endigk),e) tail information exists for

a SLOPE estimate. The SLOPE is not allowed to exceed a value of 10 (a “perfect score™), which
would indicate an essentially negative exponential decrease. If the 100 largest history scores all
have values with a spread of less théf) an upper limit is assumed to have been reached and
the SLOPE is set to 10. The SLOPE should be greater than 3 to satisfy the second moment
existence requirement of the CLT. Théfx) will appear to be “completely” sampled and hence

N will appear to have approached infinity.

A printed plot off(x) is automatically generated in the OUTP file if the SLOPE is less than 3 (or

if any of the other statistical checks described in the next section do not pass). If

0 < SLOPE < 10, several “S’s” appear on the printed plot to indicate the Pareto fit, allowing the
quality of the fit to the largest history scores to be assessed visually. If the largest scores are not
Pareto in shape, the SLOPE value may not reflect the best estimate of the largest history score
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decrease. A new SLOPE can be estimated graphically. A blank or 162 on the PRINT card also
will cause printed plots of the first two cumulative moments of the empigigab be made.
Graphical plots of variougx) quantities can be made using the “z” plot option (MCPLOT) with

the TFC plot command. These plots should be examined for unusual behavior in the empirical
f(x), including holes or spikes in the tail. MCNP tries to assess both conditions and prints a
message if either condition is found.

l. Forming Statistically Valid Confidence Intervals

The ultimate goal of a Monte Carlo calculation is to produce a valid confidence interval for each
tally bin. Section VI has described different statistical quantities and the recommended criteria
to form a valid confidence interval. Detailed descriptions of the information available in the
output for all tally bins and the TFC bins are now discussed.

1. Information Available for Forming Statistically Valid Confidence

The R is calculated for every user-specified tally bin in the problem. The VOV and the shifted
confidence interval center, discussed below, can be obtained for all bins with a nonzero entry for
the 15th entry on the DBCN card at problem initiation.

a. R Magnitude Comparisonsith MCNP Guidelines: The quality of MCNP Monte
Carlo tallies historically has been associated with two statistical checks that have been the
responsibility of the user: 1) for all tally bins, the estimated relative error magnitude rules—of—
thumb that are shown in Fig. 2-3 (i.e.<R.1 for nonpoint detector tallies andm®.05 for point
detector tallies); and 2) a statistically constant FOM in the user-selectable (TFn card) TFC bin
so that the estimated R is decreasind.by/N as required by the CLT.

In an attempt to make the user more aware of the seriousness of checking these criteria, MCNP
provides checks of the R magnitude for all tally bins. A summary of the checks is printed in the
“Status of Statistical Checks” table. Messages are provided to the user giving the results of these
checks.

b. Asymmetric Confidence Intesis: A correlation exists between the estimated mean
and the estimated uncertainty in the m&tf.the estimated mean is below the expected value,
the estimated uncertainty in the megn  will most likely be below its expected value. This
correlation is also true for higher moment quantities such as the VOV. The worst situation for
forming valid confidence intervals is when the estimated mean is much smaller than the expected
value, resulting in smaller than predicted coverage rates. To correct for this correlation and
improve coverage rates, one can estimate a statistic shift in the midpoint of the confidence
interval to a higher value. The estimated mean is unchanged.
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The shifted confidence interval midpoint is the estimated mean plus a term proportional to the
third central moment. The term arises from an Edgeworth expaiidimattempt to correct the
confidence interval for non-normality effects in the estimate of the mean. The adjustment term
is given by

SHIFT = 3(x —%)*/(25°N)

Substituting for the estimated mean and expanding produces

3 2 3,02 2 2
SHIFT = (Zx7 —32x 2x/N +2(Zx,)"/N")/(2(NZx; —(Zx)7))

The SHIFT should decrease a8\. This term is added to the estimated mean to produce the
midpoint of the now asymmetric confidence interval about the mean. This value of the
confidence interval midpoint can be used to form the confidence interval about the estimated
mean to improve coverage rates of the true, but unknown, lBégnThe estimated mean plus

the SHIFT is printed automatically for the TFC bin for all tallies. A nonzero entry for the 15th
DBCN card entry produces the shifted value for all tally bins.

This correction approaches zerd¥approaches infinity, which is the condition required for the
CLT to be valid. Kalo¥ uses a slightly modified form of this correction to determine if the
requirements of the CLT are “substantially satisfied.” His relation is

|Z(Xi —)'()3| « S3JN ,
which is equivalent to

SHIFT« §/2

The user is responsible for applying this check.

c. Forming \alid Confidence Inteals for Non—TFC Bins: The amount of statistical
information available for non—TFC bins is limited to the mean and R. The VOV and the center
of the asymmetric confidence can be obtained for all tally bins with a nonzero 15th entry on the
DBCN card in the initial problem. The magnitude criteria for R (and the VOV, if available)
should be met before forming a confidence interval. If the shifted confidence interval center is
available, it should be used to form asymmetric confidence intervals about the estimated mean.

History dependent information about R (and the VOV, if available) for non—TFC bins can be
obtained by printing out the tallies periodically during a calculation using the PRDMP card. The
N-dependent behavior of R can then be assessed. The complete statistical information available
can be obtained by creating a new tally and selecting the desired tally bin with the TFn card.
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2. Information Available for Forming Statistically Valid Confidence Intervals for TFC Bins

Additional information about the statistical behavior of each TFC bin result is available. ATFC
bin table is produced by MCNP after each tally to provide the user with detailed information
about the apparent quality of the TFC bin result. The contents of the table are discussed in the
following subsections, along with recommendations for forming valid confidence intervals using
this information.

a. TFC Bin Tally Information: The first part of the TFC bin table contains information
about the TFC bin result including the mean, R, scoring efficiency, the zero and nonzero history
score components of R (see page 2-109), and the shifted confidence interval center. The two
components of R can be used to improve the problem efficiency by either improving the history
scoring efficiency or reducing the range of nonzero history scores.

b. ThelargestTFC Bin History ScoreOccursontheNext History: There are occasions
when the user needs to make a conservative estimate of a tally result. Conservative is defined so
that the results will not be less than the expected result. One reasonable way to make such an
estimate is to assume that the largest observed history score would occur again on the very next
history,N + 1.

MCNP calculates new estimated values for the mean, R, VOV, FOM, and shifted confidence
interval center for the TFC bin result for this assumption. The results of this proposed occurrence
are summarized in the TFC bin information table. The user can assess the impact of this
hypothetical happening and act accordingly.

c. Descriptionof the 10 StatisticalChecksfor the TEC Bin: MCNP prints the results of
ten statistical checks of the tally in the TFC bin at each print. In a “Status of Statistical Checks”
table, the results of these ten checks are summarized at the end of the output for all TFC bin
tallies. The guantities involved in these checks are the estimated mean, R, VOV, FOM, and the
large history score behavior f§k). Passing all of the checks should provide additional assurance
that any confidence intervals formed for a TFC bin result will cover the expected result the
correct fraction of the time. At a minimum, the results of these checks provide the user with more
information about the statistical behavior of the result in the TFC bin of each tally.

The following 10 statistical checks are made on the TFCs printed at the end of the output for
desirable statistical properties of Monte Carlo solutions:

MEAN

(1) anonmonotonic behavior (no up or down trend) in the estimated mean as a
function of the number historiééfor the last half of the problem;
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R

(2) an acceptable magnitude of the estimated R of the estimated w@@Hfor a
point detector tally ok 0.10 for a non-point detector tally);

(3) amonotonically decreasing R as a function of the number histdriesthe last
half of the problem;

(4) al/./N decrease in the R as a functioftNdor the last half of the problem;

VOV

(5) the magnitude of the estimated VOV should be less than 0.10 for all types of
tallies;

(6) a monotonically decreasing VOV as a functiofNdbr the last half of the
problem;

(7) al/Ndecrease in the VOV as a functionNbfor the last half of the problem;

FOM

(8) a statistically constant value of the FOM as a functioN &r the last half of the
problem;

(9) a nonmonotonic behavior in the FOM as a functioN &@r the last half of the
problem; and

(x)

(10) the SLOPE (see page 2—-118) of the 25 to 201 largest positive (negative with a
negative DBCN(]6) entry) history scoreshould be greater than 3.0 so that the
second momenf x“f(x)dx will exist if the SLOPE is extrapolated to infinity.

The severN-dependent checks for the TFC bin are for the last half of the problem. The last half
of the problem should be well behaved in the sense of the CLT to form the most valid confidence
intervals. “Monotonically decreasing” in checks 3 and 5 allows for some increases in both R and
the VOV. Such increases in adjacent TFC entries are acceptable and usually do not, by
themselves, cause poor confidence intervals. A TFC bin R that does not pass check 3, by
definition in MCNP, does not pass check 4. Similarly, a TFC bin VOV that does not pass check
6, by definition, does not pass check 7.

A table is printed after each tally for the TFC bin result that summarizes the results and the pass
or no-pass status of the checks. Both asymmetric and symmetric confidence intervals are printed
for the one, two, and threlevels when all of the statistical checks are passed. These intervals
can be expected to be correct with improved probability over historical rules of thumb. This is
NOT A GUARANTEE, however; there is always a possibility that some as—yet—unsampled
portion of the problem would change the confidence interval if more histories were calculated.
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A WARNING is printed if one or more of these ten statistical checks is not passed, and one page
of printed plot information abotifx) is produced for the user to examine.

An additional information-only check is made on the largestffixescore grid bins to determine

if there are bins that have no samples or if there is a spike f(kathat does not appear to have

an upper limit. The result of the check is included in the TFC summary table for the user to
consider. This check is not a pass or no-pass test because a hole in the tail may be appropriate
for a discretd(x) or an exceptional sample occurred with so little impact that none of the ten
checks was affected. The empiritx) should be examined to assess the likelihood of

“complete” sampling.

d. Forming Valid TFC Bin Confidence Intervals: For TFC bin results, the highest
probability of creating a valid confidence interval occurs when all of the statistical checks are
passed. Not passing several of the checks is an indication that the confidence interval is less
likely to be correct. A monotonic trend in the mean for the last half of the problem is a strong
indicator that the confidence interval is likely to produce incorrect coverage rates. The
magnitudes of R and the VOV should be less than the recommended values to increase the
likelihood of a valid confidence interval. Small jumps in the R, VOV, and/or the FOM as a
function ofN are not threatening to the quality of a result. The slogédfs an especially strong
indicator thaitN has not approached infinity in the sense of the CLT. If the slope appears too
shallow & 3), check the printed plot d¢x) to see that the estimated Pareto fit is adequate. The
use of the shifted confidence interval is recommended, although it will be a small effect for a
well-converged problem.

The last half of the problem is determined from the TFC. The more information available about
the last half of the problem, the better tkedependent checks will be. Therefore, a problem that

has run 40,000 histories will have 20 TRN@&ntries, which is morH entries than a 50,000

history problem with 13 entries. It is possible that a problem that passes all tests at 40,000 may
not pass all the tests at 40,001. As is always the case, the user is responsible for deciding when
a confidence interval is valid. These statistical diagnostics are designed to aid in making this
decision.

J. A Statistically Pathological Output Example

A statistically pathological test problem is discussed in this section. The problem calculates the
surface neutron leakage flux above 12 MeV from an isotropic 14 MeV neutron point source of
unit strength at the center of a 30 cm thick concrete shell with an outer radius of 390 cm. Point
and ring detectors were deliberately used to estimate the surface neutron leakage flux with highly
inefficient, long-tailed(x)s. The input is shown on page 5-50.

The variance reduction methods used were implicit capture with weight cutoff, low-score point
detector Russian roulette, and a 0.5 mean free path (4 cm) neighborhood around the detectors to
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produce large, but finite, higher moments. Other tallies or variance reduction methods could be
used to make this calculation much more efficient, but that is not the object of this example. A
surface flux estimator would have been over a factor of 150 to 30,000 times more efficient than
ring and point detectors, respectively.

Figure 2.16 shows MCNP plots of the estimated mean, R, VOV and slope of the history score
PDF as a function dfl values of 20,000 (left column) and 5 million (right column). The ring
detector results are shown as the solid line and the point detector result is the dashed line.

Column 1 shows the results as a functlomdor 20,000 histories. The point detector result at
14,000 histories (not shown) was41x 10 % cm2/s (R=0.041). The FOM varied somewhat
randomly between about 800 and 1160 for the last half of the problem. With no other
information, this result could be accepted by even a careful Monte Carlo practitioner. However,
the VOV never gets close to the required 0.1 value and the slope of the unbifxndddss

than 1.4. This slope could not continue indefinitely because even the nfégmaiuld not

exist. Therefore, a confidence interval should not be formed for this tally. At 20,000 histories, R
increases substantially and the FOM crashes, indicating serious problems with the result.

The ring detector result is hayving problems of its own. The ring detector result for 14,000
histories wast.60x 10°n/cnf/s (R=0.17, VOV=0.35, slope=2.1, FOM=67). None of the
plotted quantities satisfies the required convergence g crlterla The correct detector result, obtained
from a 5 million history ring detector tally, &72x 10 8/ cnf/s (R=0.0169, VOV=0.023,
slope=4.6, FOM=19). The apparently converged 14,000 history point detector result is a factor
of four below the correct result!

If you were to run 200,000 histories, you would see the point detector result increasing to
3.68x 10°n/cnt/s (R=0.20, VOV=0.30, slope=1.6, FOM=1.8). The magnitudes of R and the
VOV are much too large for the point detector result to be accepted. The sldpéisfslowly
increasing, but has only reached a value of 1.6. This slope is still far too shallow compared to the
required value of 3.0.

The ring detector result &.06 x 10%n/cnf/s (R=0.0579, VOV=0.122, slope=2.8, FOM=22)

at 192,000 histories is interesting. All of these values are close to being acceptable, but just miss
the requirements. The ring detector result is more than two estimated standard deviations below
the correct result.

Column 2 shows the results as a functiorNdbr 5 million histories. The ring detector result of
5.72x 10°n/cnf/s (R=0.0169, VOV=0.023, slope=4.6, FOM=19) now appears very well
behaved in all categories. This tally passed all 10 statistical checks. There appears to be no
reason to question the validity of this tally. The point detector restil¥sx 10° n/cnf/s
(R=0.11, VOV=0.28, slope=2.1, FOM=0.45). The result is clearly improving, but does not meet
the acceptable criteria for convergence. This tally did not pass 3 out 10 statistical checks.
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When you compare the empirical point deteéto)s for 14,000 and 200 million histories you

see that the 14,000 histdi(x) clearly has unsampled regions in the tail, indicating incomplete
f(x) sampling®* For the point detector, seven decadesltdve been sampled by 200 million
histories compared to only three decades for 14,000 histories. The ksgestur from the
extremely difficult to sample histories that have multiple small energy loss collisions close to the
detector. The 200 million history point detector resufi.ékllx 10 n/ cnt/s (R=0.035,
VOV=0.60, slope=2.4, FOM=0.060). The point deteéfoy slope is increasing, but still is not

yet completely sampled. This tally did not pass 6 of 10 checks with 200 million histories. The
resultis about 1.5 estimated standard deviations below the correct answer. It is important to note
that calculating a large number of histories DOES NOT guarantee a precise result. The more
compact empirical rinf(x) for 20 million histories appears to be completely sampled because
of the large slope. The results for 1 billion histories are shown in Ref. 86.

For difficult to sample problems such as this example, it is possible that an even larger history
score could occur that would cause the VOV and possibly the slope to have unacceptable values.
The mean and RE will be much less affected than the VOV. The additional running time required
to reach acceptable values for the VOV and the slope could be prohibitive. The large history
score should NEVER be discarded from the tally result. Itis important that the cause for the large
history score be completely understood. If the score was created by a poorly sampled region of
phase space, the problem should be modified to provide improved phase space sampling. It is
also possible that the large score was created by an extremely unlikely set of circumstances that
occurred “early” in the calculation. In this situation, if the RE is within the guidelines, the
empiricalf(x) appears to be otherwise completely sampled, and the largest history score appears
to be a once in a lifetime occurrence, a good confidence interval can still be formed. If a
conservative (large) answer is required, the printed result that assumes the largest history score
occurs on the very next history can be used.

Comparing several empirick)s for the above problem with 200 million histories that have

been normalized so that the mean of ef{ghis unity, you see that the point detector at 390 cm
clearly is quite Cauchy—like (see Eq. (2.25) for many decddi@se point detector at 4000 cm

is a much easier tally (by a factor of 10,000) as exhibited by the much more compact empirical
f(x). The large—score tail decreases in a manner similar to the negative expépgniiae

surface flux estimator is the most comgécy of all. The blip on the high—score tail is caused

by the average cosine approximation of 0.05 between cosines of 0 and 0.1 (see page 2—-80). This
tally is 30,000 times more efficient than the point detector tally.
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VII. VARIANCE REDUCTION

A. General Considerations

1. Variance Reduction and Accuracy

Variance-reducing techniques in Monte Carlo calculations reduce the computer time required to
obtain results of sufficiemgrecision. Note that precision is only one requirement for a good
Monte Carlo calculation. Even a zero variance calculation cannot accurately predict natural
behavior if other sources of error are not minimized. Factors affecting accuracy were discussed
in Section VI beginning on page 2—99.

2. Two Choices That Affect Efficiency

The efficiency of a Monte Carlo calculation is affected by two choices, tally type and random
walk sampling. The tally choice (for example, point detector flux tally vs. surface crossing flux
tally) amounts to trying to obtain the best results from the random walks sampled. The chosen
random walk sampling amounts to preferentially sampling “important” random walks at the
expense of “unimportant” random walks. (A random walk is important if it has a large affect on

a tally.) These two choices usually affect the time per history and the history variance as
described in Sec. 3 below. MCNP estimates tallies of the form

<T>= Id?IdVIdtN(?, vV, )T(T,V, 1)

by sampling particle histories that statistically produce the correct particle déngityV, t)

The tally functionT (¥, V, t) is zero except where a tally is required. For example, for a surface
crossing tally(F1), T will be one on the surface and zero elsewhere. MCNP variance reduction
techniques allow the user to try to produce better statistical estimatestadreT is large,

usually at the expense of poorer estimates whésezero or small.

There are many ways to statistically prodtkte?, v, t) . Analog Monte Carlo simply samples
the events according to their natural physical probabilities. In this way, an analog Monte Carlo
calculation estimates the number of physical particles executing any given random walk.
Nonanalog techniques do not directly simulate nature. Instead, nonanalog techniques are free to
do anything ifN, hence< T >, is preserved. This preservation is accomplished by adjusting the
weight of the particles. The weight can be thought of as the number of physical particles
represented by the MCNP particle (see page 2—26). Every time a decision is made, the nonanalog
techniques require that the expected weight associated with each outcome be the same as in the
analog game. In this way, the expected number of physical particles executing any given random
walk is the same as in the analog game.
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For example, if an outcome “A” is madgtimes as likely as in the analog game, when a particle
chooses outcome “A” its weight must be multiplieddpy to preserve the expected weight for
outcome “A.” Letp be the analog probability for outcome “A”; thpgis the nonanalog
probability for outcome “A.” Ifwg is the current weight of the particle, then the expected weight
for outcome “A” in the analog gamevg[p and the expected weight for outcome “A” in the
nonanalog game isv{/q)Lpq.

MCNP uses three basic types of nonanalog games: (1) splitting, (2) Russian roulette, and

(3) sampling from nonanalog probability density functions. The previous paragraph discusses
type 3. Splitting refers to dividing the particle's weight among two or more daughter particles
and following the daughter particles independently. Usually the weight is simply divided evenly
amongk identical daughter particles whose characteristics are identical to the parent except for
a factorl/kin weight (for example, splitting in the weight window). In this case the expected
weight is clearly conserved because the analog technique has one particle oiwyatght

(¥, V,t), whereas the splitting resultskrparticles of weighivy/k at (¥, V,t) . In both cases

the outcome is weight, at (7', V, t) .

Other splitting techniques split the parent particle kytiypically two, differing daughter
particles. The weight of thd daughter represents the expected number of physical particles that
would select outcomefrom a set ok mutually exclusive outcomes. For example, the MCNP
forced collision technique considers two outcomes: (1) the particle reaches a cell boundary
before collision, or (2) the particle collides before reaching a cell boundary. The forced collision
technique divides the parent particle represemtigghysical particles into two daughter
particles, representing; physical particles that are uncollided amgdphysical particles that
collide. The uncollided particle of weight, is then put on the cell boundary. The collision site

of the collided particle of weight, is selected from a conditional distance-to-collision
probability density, the condition being that the particle must collide in the cell. This technique
preserves the expected weight colliding at any point in the cell as well as the expected weight
not colliding. A little simple mathematics is required to demonstrate this technique.

Russian roulette takes a particle(ﬁt? 1) of weighaind turns it into a particle of weight
w; > Wy with probabilitywy/w; and kills it (that is, weight=0) with probabilityl(— (wy/w,)). The
expected weight aff, v, t) i O(Wy/w,) + (1 — (Wy/wy)) O = wy, the same as in the analog
game.

Some techniques use a combination of these basic games and DXTRAN uses all three.

3. Efficiency, Time per History, and History Variance

Recall from page 25108 that the measure of efficiency for MCNP calculations is the
FOM: FOM=1/(R°T), where
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sample relative standard deviation of the mean and
computer time for the calculation (in minutes).

R?
T

Recall from Eqns. 2.17 and 2.19a tRat (S/./N/x , where

& = sample history variance,
N = number of particles, and
X = sample mean.

Generally we are interested in obtaining the smaResta given timel. The equation above
indicates that to decreaBat is desirable to: 1) decreaSand 2) increasH; that is, decrease

the time per particle history. Unfortunately, these two goals usually conflict. Decr&asing
normally requires more time because better information is required. Incréasargrally
increase$ because there is less time per history to obtain information. However, the situation
is not hopeless. It is often possible either to decr8asbstantially without decreasihgtoo

much or to increasl substantially without increasir§too much, so thaR decreases.

Many variance reduction techniqgues in MCNP attempt to decRebgeither producing or
destroying particles. Some techniques do both. In general, techniques that produce tracks work
by decreasin@ (we hope much faster thahdecreases) and techniques that destroy tracks work

by increasing\ (we hope much faster th&increases).

4. Strategy

Successful use of MCNP variance reduction techniques is often difficult, tending to be more art
than science. The introduction of the weight window generator has improved things, but the user
is still fundamentally responsible for the choice and proper use of variance reducing techniques.
Each variance reduction technique has its own advantages, problems, and peculiarities.
However, there are some general principles to keep in mind while developing a variance
reduction strategy.

Not surprisingly, the general principles all have to do with understanding both the physical
problem and the variance reduction techniques available to solve the problem. If an analog
calculation will not suffice to calculate the tally, there must be something special about the
particles that tally. The user should understand the special nature of those particles that tally.
Perhaps, for example, only particles that scatter in particular directions can tally. After the user
understands why the tallying particles are special, MCNP techniques can be selected (or
developed by the user) that will increase the number of special particles followed.

After the MCNP techniques are selected the user typically has to supply appropriate parameters
to the variance reduction techniques. This is probably more difficult than is the selection of
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techniques. The first guess at appropriate parameters typically comes either from experience
with similar problems or from experience with an analog calculation of the current problem. It
is usually better to err on the conservative side; that is, too little biasing rather than too much
biasing. After the user has supplied parameters for the variance reduction techniques, a short
Monte Carlo run is done so that the effectiveness of the techniques and parameters can be
monitored with the MCNP output.

The MCNP output contains much information to help the user understand the sampling. This
information should be examined to ensure that

(1) thevariance reduction techniques are improving the sampling of the particles that
tally;

(2) the variance reduction techniques are working cooperatively; that is, one is not
destructively interfering with another;

(3) theFOM table is not erratic, which would indicate poor sampling; and

(4) there is nothing that looks obviously ridiculous.

Unfortunately, analyzing the output information requires considerable thought and experience.
Reference 98 shows in detail strategies and analysis for a particular problem.

After ascertaining that the techniques are improving the calculation, the user makes a few more
short runs to refine the parameters until the sampling no longer improves. The weight window
generator can also be turned on to supply information about the importance function in different
regions of the phase space. This rather complex subject is described on page 2-139.

5. Erratic Error Estimates

Erratic error estimates are sometimes observed in MCNP calculations. In fact, the primary
reason for the Tally Fluctuation Chart (TFC) table in the MCNP output is to allow the user to
monitor theFOM and the relative error as a function of the number of histories. With few
exceptions, such as an analog point detector embedded in a scattering mediug+Wifa R

practice highly discouraged), MCNP tallies are finite variance tallies. For finite variance tallies
the relative error should decrease roughly/as sbé@id should be roughly constant and

the ten statistical checks of the tallies (see page 2—121) should all be passed. If the statistical
checks are not passed, the error estimates should be considered erratic and unreliable, no matter
how small the relative error estimate is.

Erratic error estimates occur typically because a high-weight particle tallies from an important
region of phase space that has not been well sampled. A high-weight particle in a given region
of phase space is a particle whose weight is some nontrivial fraction of \underbar{all} the weight
that has tallied from that region because of all previous histories. A good example is a particle
that collides very close to a point or ring detector. If not much particle weight has previously
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collided that close to the detector, the relative error estimate will exhibit a jump for that history.
Another example is coherent photon scattering towards a point detector (see page 2-62).

To avoid high-weight particles in important regions, the user should try to ensure that these
regions are well sampled by many particles and try to minimize the weight fluctuation among
these particles. Thus the user should try to use biasing techniques that preferentially push
particles into important regions without introducing large weight fluctuations in these regions.
The weight window can often be very useful in minimizing weight fluctuations caused by other
variance reduction techniques.

If, despite a user's efforts, an erratic error estimate occurs, the user should obtain event logs for
those particles causing the estimate to be erratic. The event logs should be studied to learn what
is special about these particles. When the special nature of these particles is understood, the user
can adjust the variance reduction techniques to sample these particles more often. Thus their
weight will be smaller and they will not be as likely to cause erratic estimblteder absolutely

no circumstances should these particles be discarded or igndhedfact that these particles
contribute very heavily to the tally indicates that they are important to the calculation and the
user should try to sampigore of them.

6. Biasing Against Random Walks of Presumed Low Importance

It was mentioned earlier that one should be cautious and conservative when applying variance
reduction techniques. Many more people get into trouble by overbiasing than by underbiasing.
Note that preferentially sampling some random walks means that some walks will be sampled
(for a given computer time) less frequently than they would have been in an analog calculation.
Sometimes these random walks are so heavily biased against that very few, or even none, are ever
sampled in an actual calculation because not enough particles are run.

Suppose that (on average) for every million histories only one track enters cell 23. Further
suppose that a typical run is 100,000 histories. On any given run it is unlikely that a track enters
cell~23. Now suppose that tracks entering cell 23 turn out to be much more important than a
user thought. Maybe 10% of the answer should come from tracks entering cell 23. The user
could run 100,000 particles and get 90% of the true tally with an estimated error of 1%, with
absolutely no indication that anything is amiss. However, suppose the biasing had been set such
that (on average) for every 10,000 particles, one track entered cell 23, about 10 tracks total. The
tally probably will be severely affected by at least one high weight particle and will hover closer
to the true tally with a larger and perhaps erratic error estimate. The essential point is this:
following ten tracks into cell 23 does not cost much computer time and it helps ensure that the
estimated error cannot be low when the tally is seriously in error. Always make sure that all
regions of the problem are sampled enough to be certain that they are unimportant.

April 10, 2000 2-131



CHAPTER 2
VARIANCE REDUCTION

B. Variance Reduction Techniques

There are four classes of variance reduction techmigjtiest range from the trivial to the
esoteric.

Truncation Methodare the simplest of variance reduction methods. They speed up calculations
by truncating parts of phase space that do not contribute significantly to the solution. The

simplest example is geometry truncation in which unimportant parts of the geometry are simply
not modeled. Specific truncation methods available in MCNP are energy cutoff and time cutoff.

Population Control Methodase patrticle splitting and Russian roulette to control the number of
samples taken in various regions of phase space. In important regions many samples of low
weight are tracked, while in unimportant regions few samples of high weight are tracked. A
weight adjustment is made to ensure that the problem solution remains unbiased. Specific
population control methods available in MCNP are geometry splitting and Russian roulette,
energy splitting/roulette, weight cutoff, and weight windows.

Modified Sampling Methodster the statistical sampling of a problem to increase the number of
tallies per particle. For any Monte Carlo event it is possible to sample from any arbitrary
distribution rather than the physical probability as long as the particle weights are then adjusted
to compensate. Thus with modified sampling methods, sampling is done from distributions that
send particles in desired directions or into other desired regions of phase space such as time or
energy, or change the location or type of collisions. Modified sampling methods in MCNP
include the exponential transform, implicit capture, forced collisions, source biasing, and
neutron-induced photon production biasing.

Partially-Deterministic Methodare the most complicated class of variance reduction methods.
They circumvent the normal random walk process by using deterministic-like techniques, such
as next event estimators, or by controlling of the random number sequence. In MCNP these
methods include point detectors, DXTRAN, and correlated sampling.

The available MCNP variance reduction techniques now are described.

1. Energy Cutoff

The energy cutoff in MCNP is either a single user-supplied, problem-wide energy level or a cell-
dependent energy level. Particles are terminated when their energy falls below the energy cutoff.
The energy cutoff terminates tracks and thus decreases the time per history. The energy cutoff
should be used only when itkmown that low-energy particles are either of zero or almost zero
importance. An energy cutoff is like a Russian roulette game with zero survival probability. A
number of pitfalls exist.
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1. Remember that low-energy particles can often produce high-energy particles (for
example, fission or low-energy neutrons inducing high-energy photons). Thus, even
if a detector is not sensitive to low-energy particles, the low-energy particles may be
important to the tally.

2. The CUT card energy cutoff is the same throughout the entire problem. Often low-
energy particles have zero importance in some regions and high importance in others,
and so a cell-dependent energy cutoff is also available with the ELPT card.

3. The answer will be biased (low) if the energy cutoff is killing particles that might
otherwise have contributed. FurthermoreNas, o the apparent error will go to zero
and therefore mislead the unwary. Serious consideration should be given to two
techniques discussed later, energy roulette and space-energy weight window, that are
always unbiased.

The energy cutoff has one advantage not directly related to variance reduction. A lower energy
cutoff requires more cross sections so that computer memory requirements go up and interactive
computing with a timesharing system is degraded.

2. Time Cutoff

The time cutoff in MCNP is a single user-supplied, problem-wide time value. Particles are
terminated when their time exceeds the time cutoff. The time cutoff terminates tracks and thus
decreases the computer time per history. A time cutoff is like a Russian roulette game with zero
survival probability. The time cutoff should only be used in time-dependent problems where the
last time bin will be earlier than the cutoff.

Although the energy and time cutoffs are similar, more caution must be exercised with the
energy cutoff because low energy particles can produce high energy particles, whereas a late
time particle cannot produce an early time patrticle.

3. Geometry Splitting with Russian Roulette

Geometry splitting/Russian roulette is one of the oldest and most widely used variance-reducing
techniques in Monte Carlo codes. When used judiciously, it can save substantial computer time.
As particles migrate in an important direction, they are increased in number to provide better
sampling, but if they head in an unimportant direction, they are killed in an unbiased manner to
avoid wasting time on them. Oversplitting, however, can substantially waste computer time.
Splitting generally decreases the history variance but increases the time per history, whereas
Russian roulette generally increases the history variance but decreases the time per history.

Each cellin the problem geometry setup is assigned an importéydbe user on the IMP input

card. The numbdrshould be proportional to the estimated value that particles in the cell have
for the quantity being scored. When a particle of weldhpasses from a cell of important&
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one of higher importancE , the particle is split into a number of identical particles of lower
weight according to the following recipe. If/1  isanintegdn=>=2) ,the patrticle is splitinto
n identical particles, each weighiy/n Weight is preserved in the integer splitting process. If
I'/1 is not an integer but still greater than 1, splitting is done probabilistically so that the

expected number of splits is equal to the importance ratio. Denoting!'/1] to be the
largest integerin’/1 p = 1'/1 —n is defined. Then with probabitityr + 1 particles are
used, and with probability — p, n particles are used. For examplel,'if | is 2.75, 75% of the

time split 3 for 1 and 25% of the time split 2 for 1. The weight assigned to each patrticle is
W /1", which is the expected weight, to minimize dispersion of weights.

On the other hand, if a particle of weighitpasses from a cell of importanice one of lower
importancd’ , so that'/l <1, Russian roulette is played and the particle is killed with
probability 1-(I'/I), or followed further with probability/I and weightw /1" .

Geometry splitting with Russian roulette is very reliable. It can be shown that the weights of all
particle tracks are the same in a cell no matter which geometrical path the tracks have taken to
get to the cell, assuming that no other biasing techniques, e.g. implicit capture, are used. The
variance of any tally is reduced when the possible contributors all have the same weight.

The assigned cell importances can have any value—they are not limited to integers. However,
adjacent cells with greatly different importances place a greater burden on reliable sampling.
Once a sample track population has deteriorated and lost some of its information, large splitting
ratios (like 20 to 1) can build the population back up, but nothing can regain the lost information.
It is generally better to keep the ratio of adjacent importances small (for example, a factor of a
few) and have cells with optical thicknesses in the penetration direction less than about two mean
free paths. MCNP prints a warning message if adjacent importances or weight windows have a
ratio greater than 4. PRINT TABLE 120 in the OUTP file lists the affected cells and ratios.

Generally, in a deep penetration shielding problem the sample size (number of particles)
diminishes to almost nothing in an analog simulation, but splitting helps keep the size built up.
A good rule is to keep the population of tracks traveling in the desired direction more or less
constant—that is, approximately equal to the number of particles started from the source. A
good initial approach is to split the particles 2 for 1 wherever the track population drops by a
factor of 2. Near-optimum splitting usually can be achieved with only a few iterations and
additional iterations show strongly diminishing returns. Note that in a combined neutron/photon
problem, importances will probably have to be set individually for neutrons and for photons.

MCNP never splits into a void, although Russian roulette can be played entering a void.
Splitting into a void accomplishes nothing except extra tracking because all the split particles
must be tracked across the void and they all make it to the next surface. The split should be done
according to the importance ratio of the last nonvoid cell departed and the first nonvoid cell
entered.Note four more items:
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Geometry splitting/Russian roulette works well only in problems that do not have
extreme angular dependence. In the extreme case, splitting/Russian roulette can be
useless if no particles ever enter an important cell where the particles can be split.

Geometry splitting/Russian roulette will preserve weight variations. The technique is
“dumb”in that it never looks at the particle weight before deciding appropriate action.
An example is geometry splitting/Russian roulette used with source biasing.

Geometry splitting/Russian roulette are turned on or off together.

Particles are killed immediately upon entering a zero importance cell, acting as a
geometry cutoff.

4. Energy Splitting/Roulette

Energy splitting and roulette typically are used together, but the user can specify only one if
desired. Energy splitting/roulette is independent of spatial cell. If the problem has a space-
energy dependence, the space-energy dependent weight window is normally a better choice.

1.

Splitting: In some cases, particles are more important in some energy ranges than in

others. For example, it may be difficult to calculate the numb&0ffissions

because the thermal neutrons are also being captured and not enough thermal neutrons
are available for a reliable sample. In this case, once a neutron falls below a certain
energy level it can be split into several neutrons with an appropriate weight
adjustment. A second example involves the effect of fluorescent emission after
photoelectric absorption. With energy splitting, the low-energy photon track
population can be built up rather than rapidly depleted, as would occur naturally with
the high photoelectric absorption cross section. Particles can be split as they move up
or down in energy at up to five different energy levels.

Energy splitting can increase as well as decrease tally variances. Currently, the MCNP
weight cutoff game does not take into account whether a particle has undergone
energy splitting or not. Consequently, particles undergoing energy splitting may then
be rouletted by the weight cutoff game, defeating any advantages of the energy
splitting.

With only a minor modification to MCNP, the mechanics for energy splitting can be
used for time splitting.

Russian roulette: In many cases the number of tracks increases with decreasing
energy, especially neutrons near the thermal energy range. These tracks can have
many collisions requiring appreciable computer time. They may be important to the
problem and cannot be completely eliminated with an energy cutoff, but their number
can be reduced by playing a Russian roulette game to reduce their number and
computer time.
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If atrack's energy drops through a prescribed energy level, the roulette game is played,
based on the input value of the survival probability. If the game is won, the track's
history is continued, but its weight is increased by the reciprocal of the survival
probability to conserve weight.

5. Weight Cutoff

In weight cutoff, Russian roulette is played if a particle's weight drops below a user-specified
weight cutoff. The particle is either killed or its weight is increased to a user-specified level. The
weight cutoff was originally envisioned for use with geometry splitting/Russian roulette and
implicit capture, see page 2—144. Because of this intent,

1. The weight cutoffs in cejldepend not only ow/ClandWC2on the CUT card, but
also on the cell importances.

2. Implicit capture is always turned on (except in detailed photon physics) whenever a
nonzerdWClis specified.

Referring to item 1 above, the weight cutoff is applied when the particle’s weight falls below
R WC2Z whereR; is the ratio of the source cell importance (IMP card) to gelimportance.

With probability W/(WC1UR;) the particle survives with new weigtC10R;; otherwise the
particle is killed. WherwClandWC2on the CUT card are negative, the weight cutoff is scaled
to the minimum source weight of a particle so that source particles are not immediately killed
by falling below the cutoff.

As mentioned earlier, the weight cutoff game was originally envisioned for use with geometry
splitting and implicit capture. To illustrate the need for a weight cutoff when using implicit
capture, consider what can happen without a weight cutoff. Suppose a patrticle is in the interior
of a very large medium and there are neither time nor energy cutoffs. The particle will go from
collision to collision, losing a fraction of its weight at each collision. Without a weight cutoff, a
particle's weight would eventually be too small to be representable in the computer, at which
time an error would occur. If there are other loss mechanisms (for example, escape, time cutoff,
or energy cutoff), the particle’s weight will not decrease indefinitely, but the particle may take
an unduly long time to terminate.

Weight cutoff's dependence on the importance ratio can be easily understood if one remembers
that the weight cutoff game was originally designed to solve the low-weight problem sometimes
produced by implicit capture. In a high-importance region, the weights arbyalesign, so it

makes no sense to play the same weight cutoff game in high- and low-importance regions.

Comments: Many techniques in MCNP cause weight change. The weight cutoff was really

designed with geometry splitting and implicit capture in mind. Care should be taken in the use
of other techniques